
A RESEARCH AND
ALUMNI NEWS MAGAZINE
DEPARTMENT OF COMPUTER SCIENCE

BROWN UNIVERSITY

A Visit to
Al Quds University

ALSO INSIDE:

� The Kanellakis Legacy Lives On
� Storytelling About Lighthouses

Research

10 Condu¡t Spring | Summer 2010

THE SLAP

I finally met E.W.Dijkstra, the brilliant computer scientist
whom I had admired for years, in Newport, Rhode Island. It
was 1986, three years after my immigration to the United
States from Romania, and Dijkstra, by then the Schlumberger
Centennial Chair in Computer Sciences at the University of
Texas at Austin, had invited me to join him for a day at the
Summer School on Program Construction being held at Salve
Regina University.

The day alternated between Professor Dijkstra lecturing and
writing on a blackboard with his exquisitely precise handwrit-
ing. (Even now, I can recall how he returned to the black-
board to redraw a capital letter M that he felt lacked parallel
vertical lines.)

At lunch, he sat near me at a long table with about ten others.
Everybody there was eager to hear what this master would say,
and because he spoke softly, few people if any were talking.
We had just about finished eating when Dijkstra raised his
voice to address me.

“Sorin - I have a problem for you.”

“Sure,” I said, thinking that this was the moment I had been
waiting for since 1983, when I first solicited Dijkstra’s comment
and guidance on a technical report I had sent him previously.

The silence at the table became more pronounced.

“Suppose we play a two-
player game played with
identical coins on a table,”
Dijkstra began. “We have
a bag of coins with as
many as we need. The
two players alternatively
take a coin from the bag
and place it on the table.
The rules of the game forbid the coin to sit on top of another
coin on the table, but it could hang off the table as long as it
does not fall off. The player who puts the last coin on the table
wins the game.”

There was something in Dijkstra’s expression – a combination
of smile and an intense Don Quixotesque gaze – that seemed
to raise the stakes at the table. I awaited the question.

“Is there an algorithm for one of the players to win always?” he
asked with the quiet, calm assurance of a man who saw it all,
who knew what would happen next.

I said nothing for a minute or two, anticipating the excite-
ment that was to come. Then, as if jarred awake from a pleas-
ant dream, I did what one does in such a moment: With my
right hand, I reached down the neck of my sweater to remove
a pen from my shirt pocket.

My hand was not even halfway there when – slap! Dijkstra
smacked my hand away from its goal. Those few seconds that
followed were long but I was slow to figure out, and I could
not believe the strength of the slap. Instinctively, I drew away
from him and the others at the table recoiled.

Dijkstra broke the silence. “Don’t mess up your thoughts,” he
proclaimed. “Keep it simple, in your head.”

It goes without saying that for the next few minutes I was
useless at solving the puzzle and I bubbled nonsense. He
waited a bit, then began offering clues. “Did I tell you any-
thing about the table?”

Storytelling About Lighthouses:
When Professor Dijkstra Slapped Me
in the Quest for Beautiful Code
By Sorin Istrail

* Arrogance in computer science * Empirical science? * Philosophy * Goddess Reason
* A Critic’s Dilemma * Pajamas algorithms * Pastiche pie prize

“If 10 years from now, when you are doing
something quick and dirty, you suddenly
visualize that I am looking over your shoul-
ders and say to yourself: ‘Dijkstra would not
have liked this.’ well that would be enough
immortality for me.” [1]

Edsger Dijkstra

11 Condu¡t Spring | Summer 2010

Research

“No,” I responded. I began to think out loud. “As it must be
true for all tables ...”

He interrupted with a question. “What is the smallest table?”

“One point?” I said trying to recover.

“Who wins then?” he asked.

By now rational, I responded. “The first player. So the first
player always wins.”

“Which table to consider next?”

“As big as a coin; again first player wins.” I thought I was on a roll.

“No.”

Me: “How about as big as two coins?”

Dijkstra: “Yes. Who wins then?”

Me: “First player puts his coin in the middle of the table. And
I am not sure if the second can put his coin, but if the second
can, so can the first again symmetrically; if not, neither can ...
so first wins again!”

Dijkstra: “Do you have the algorithm now?”

Me (excitedly, knowing what he wanted to hear): “The invari-
ant is Every point on the table, except the center, has a sym-
metric point with respect to the center.”

Dijkstra: “Bravo.”

(To translate the answer into Dijkstranese: The first player always
puts his first coin on the center of the table. The second player
puts his coin somewhere on the table that is free, and then the
first player makes his move in exactly the symmetric point to
the center, which is always free by the invariant. And so on,
mutatis mutandis. The invariant assures the correctness of the
algorithm no matter how many moves/how big the table.)

One of the Joys of Life and the Cruelty of
Really Teaching Computing Science
Dijkstra was our Professor-in-Chief. How to teach computing
science was one of the most fascinating life-long themes of
reflection for Dijkstra. He wrote many articles about teaching
methodology, he was the patriarch of posing beautiful prob-
lems and silly games, which gave him the opportunity to teach
the art of problem solving. His algorithms, solutions of his
games, define beautiful code, raising the derivation of the
code from the program specification to an art performance.
Those are not just beautiful games; they go to the heart of the
difficulty of programming methodology, and illuminate hard-
to-grasp complexities. It is an art form to invent such silly
games; this art form should be encouraged and rewarded.
They make the perfect opening of a lecture on the subject,
especially because they satisfy the right axioms: unique solu-
tion, simplicity of algorithmic solution and rational step-by-
step derivation of algorithm, generalizations become extreme-
ly difficult problems (try the above silly game with coins on a
convex table), and most of all, your can find their solution
without pen and pencil, in your head. I had the pleasure of
attending some of Professor Dijkstra’s lectures, to be trained
one-on-one in the art, to have read many of his articles on
teaching computing science, and to be inspired to uncover
and present silly games occuring in everyday life, although

their lessons are not as beautiful and important as those
concocted by the Master of Silly Games. For the younger
generation, here is a list of some his gems: the dining philoso-
phers, the elephant made of mosquitoes humming in harmo-
ny, the toilet and trains, the plateau problem, the self-stabiliza-
tion problem, average page fault frequency problem, the
Dutch national flag, banker’s algorithm, [the cryptographic
game from[EWD 666]“a problem solved in my head.”

Dijkstra examined radical innovation in teaching, and his thesis
is always that universities should have guts in teaching.

“Teaching to unsuspecting youngsters the effective use of formal
methods is one of the joys of life because it is so extremely rewarding.
Within a few months, they find their way in a new world with a
justified degree of confidence that is radically novel for them; within
a few months, their concept of intellectual culture has acquired a
radically novel dimension. To my taste and style that is what
education is about. Universities should not be afraid of teaching
radical novelties; on the contrary, it is their calling to welcome the
opportunity to do so. Their willingness to do so is our main safe-
guard against dictatorships, be they of the proletariat, of the
scientific establishment, or of the corporate elite.” E. W. Dijkstra [2]

In his “How do we tell truths that might hurt” [3] Dijkstra
wrote that “it is practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of regeneration”
and that “the use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offense.” Computer science
faculty might consider such statements dramatic, insulting,
even ridiculous, but I learned from a colleague that Dijkstra
refused to accept students in his class if they had been ex-
posed to BASIC or COBOL.
This, as well as his incorporation of “radical novelties” such as
solving a problem without pencil or paper may help you
understand the “cruelty” Dijkstra referred to in EWD1036.

Dijkstra was nothing if not consistent, holding himself to the
same standards he held others.

He arrived at his most famous algorithm, known as The Short-
est Path, in his head “while I had a cup of coffee with my wife
on a sunny café terrace in Amsterdam,” he has said.

“The algorithm for The Shortest Path was designed for the purpose
of demonstrating the power of ARMAC at its official inaugura-
tion in 1956, the one for The Shortest Spanning Tree was de-
signed to minimize the amount of copper in the backpanel wiring
of the X1. In retrospect, it is revealing that I did not rush to
publish these two algorithms: at that time, discrete algorithms had
not yet acquired mathematical respectability, and there were no
suitable journals. Eventually they were offered in 1959 to Nu-
merische Mathematik in an effort of helping that new journal to
establish itself. For many years, and in wide circles, The Shortest
Path has been the main pillar for my name and fame, and then it
is a strange thought that it was designed without pencil and paper,
while I had a cup of coffee with my wife on a sunny café terrace in
Amsterdam, only designed for a demo ...” E.W. Dijkstra [4]

He also believed that solutions could – should – be elegant,
and that elegance could prove elusive if a programmer’s first
step is to reach for a pen or pencil. (A 10 years earlier expla-
nation of a future “slap”:)

Research

12 Condu¡t Spring | Summer 2010

“I observed a few years ago that the moment at which mathemati-
cians introduce avoidable complications very often coincides
with the moment that they resort to such mechanical aids as
pencil and paper,” Dijkstra wrote in “A problem solved in my
head.” [5]“It was then that, for the sake of clarity of my own
thinking, I decided to be less liberal with the use of pencil and
paper and not to use them when I could avoid using them.”

“ARROGANCE IN COMPUTER SCIENCE IS
MEASURED IN NANO-DIJKSTRAS”

Alan Kay 1997

“Arrogance in computer science is measured in nano-Dijkstras,”
computer scientist and Turing Award winner Alan Kay said
during his 1997 OOPSLA keynote. The quip, which produced
a roar of laughter from the audience, and his ensuing criti-
cism of Dijkstra is preserved on YouTube.

I listened carefully to the YouTube video, I found Kay to be far
from eloquent. He began his keynote with an anecdote:

“He [Dijkstra] once wrote a paper of the kind that he liked to
write a lot of which had the title ‘On the fact that the Atlantic
has two sides’ [EWD611] and it was basically all about how dif-
ferent the approaches to computing science were in Europe,
especially in Holland, and in the United States. In the U.S. here,
we were not mathematical enough and, gee, in Holland, if you
are a full professor you were actually appointed by the queen,
and there were many other important distinctions made between
the two cultures.

“So I wrote a rebuttal paper and it was called ‘On the fact that
most of the software was written on one side of the Atlantic,’
and it was basically about – ’cause I have a math degree, too
– that computers formed a new kind of math … they don’t really
fit well into classical math… It was about a kind of practical
math. The balance was between making structures that were
supposed to be consistent of a much larger kind than classical
math had ever come close to dreaming of attempting, and
having to deal with the exact same problems that classical math
of any size has to deal with, which is being able to be convincing
about covering all the cases.” [6]

Defending “Arrogance”

Your Honor, ladies and gentlemen of the jury, Professor
Dijkstra is accused of “arrogance.”

Well, it is well know that at times, Professor Dijkstra expressed
his strong opinions with critical irreverence, infuriatingly
insensitive, but always with eloquence. To cite some extremes,
he called the great logician Bertrand Russell a “dilettante”
regarding his mathematical notation, accused John von Neu-
mann of bringing (contra-productive) anthropomorphic
terminology to computer science inspired by his work on the
brain as “medieval speculations”, and one of his favorite
tirades against Software Engineering, coined “the Doomed
Discipline,” and even harshly, “How to program if you cannot.”
Even more extreme, he recommended that students in

introductory programming courses should be prevented from
the temptation to execute their programs, as they should be
taught through mathematical logic to infer the correct pro-
gram hand in hand with their proof of correctness.

Despite these points of view, I believe that some of these
extremes were part of his dramatics, theatrical, and sometimes
humorous avenues to deliver a forceful message for change, a
poke in the eye for those asleep at the wheel, about the need
to breakthrough deadlock, and the need to be bluntly honest.
A model of “how to say truths that might hurt.” A number of
his critics address these extremes of his writings as if they are
his entire position

Professor Dijkstra was indeed arrogant but about honesty,
about the programming elegance, and about radical novelties
in education. Even if extreme, I still prefer his Don Quixo-
tesque exceedingly demanding goal of “logic proof” as sci-
ence-base driving force, to the faith-based “every program has
bugs” convenience. John von Neumann used to say that it is
easier to explain science with god than without god.

I would argue that Professor Kay’s and Professor Dijkstra’s
points of view are at the two at extremes; “not really fond of
mathematics in programming” vis-à-vis of the de-empiriciza-
tion of programming “craftsmanship” through mathematics
towards the science of programming.

Although the two have pursued magnificent bodies of work that
inspired many, they disagree in ways which have nothing to do
with “truth.” They each have been forcefully articulating their
own philosophy and there is nothing wrong with that. On the
contrary, philosophical discourse is a must when dealing with
things as complex as Computing Science. Who wants to talk
about the obviously neglected empiricism in specifying require-
ments of large codes, a really embarrassing subject? What is then
a programmer to do?

In what follows, I will argue the Dijkstraian quest for program-
ming de-empirization though mathematics. And to bring
home the point I want to make about bringing philosophy out
of the closet in computing science, I will go though an irrever-
ent, and infuriating to some, tour of the principles of philoso-
phy using the writing of the great mathematician Gian-Carlo
Rota. The “axioms” formulation are my attempt to present
Rota’s argument and to show how relevant philosophy is to
addressing the bottlenecks and failures in the software design
of large systems, e.g., “Inevitability of failure” or the “Myth of
precision” or the “Dictatorship of definitiveness.”

I believe that if you choose to critique someone as eloquent as
Dijkstra, you must at least strive to do so in a similar vein. It is
probably unfair to ask someone to match Dijkstra’s eloquence.
Few can. But as Dijkstra offers this view about non-principle
based criticism: “I love to be corrected. (Besides being a most
instructive experience, being corrected shows that the other one
cares about you.) If, however, they only get infuriated because I
don’t play my game according to their rules, I cannot resist the
temptation to ignore their fury and to shrug my shoulders in the
most polite manner. ... I have come to the conclusion that there
are such things as ‘disabling prejudices.’” [7]

13 Condu¡t Spring | Summer 2010

Research

In fairness, it is hard for me to believe that Professor Kay’s
piece recorded on Youtube, with its ramblings and profanity
was part of a prepared text for his Keynote. Probably what
happened was his delivery got emotional, and then inarticu-
late; “disabling prejudices” indeed! I see this as a sign of a
deeper problem in computer science, called by some The
Software Crisis.

Is Computer Programming
an Empirical Science?
Reflecting on the nature of computing science, in general,
and programming in particular, one needs to focus on the
empirical aspects, mostly belonging to the software engineer-
ing focus of the discipline, as well as on the work towards the
de-empirization of programming, via mathematical sciences.

John von Neumann talked about the de-empirization of the
natural sciences with the exquisite clarity of his writing. He
presented it by talking about the double face of mathematics.

“The most vitally characteristic fact about mathematics is, in
my opinion, its quite peculiar relationship to natural sciences,
or, more generally, to any science which interprets experi-
ence on a higher than purely descriptive level.” [8] He gave
two such glorious examples: one being Geometry and the
other Calculus which both started as natural, empirical
sciences. Then its de-empirization happened by the mathe-
matical method. “Some of the best inspirations of modern
mathematics (I believe, the best ones) clearly originated in
the natural sciences. The methods of mathematics pervade
and dominate the “theoretical” divisions of natural sciences.
In modern empirical sciences it has become more and more
a major criterion of success whether they have become acces-
sible to the mathematical method or to the near-mathemati-
cal methods of physics. Indeed, throughout the natural
sciences an unbroken chain of successive pseudomorphoses,
all of them pressing towards mathematics, and almost identi-
fied with the idea of scientific progress, has become more
and more evident. Biology becomes increasingly pervaded by
chemistry and physics, chemistry by the experimental and
theoretical physics, and physics by the very mathematical
forms of theoretical physics… One has to realize this duplici-
ty, to accept it, and to assimilate it into one’s thinking of the
subject. This double face is the face of mathematics, and I do
not believe that any simplified, Unitarian view of the thing is
possible without sacrificing the essence.”

Von Neumann’s deep questions about the nature of intellectu-
al work in mathematics can serve as a guide into our analysis
of computing science: Is computing science an empirical
science? Or, more precisely: Is computing science actually
practiced in the way in which an empirical science is prac-
ticed? Or, more generally: What is the computing scientist’s
normal relationship to his subject? What are the criteria of
success, or desirability? What influences, what considerations,
control and direct his effort?

Dijkstra addressed these questions in his writings. In “Crafts-
man or Scientist?” [9] Dijkstra discusses the two extreme tech-
niques in teaching programming. At one extreme is

the “craftsmanship style,” similar to the work of the future
craftsman joining a master and “learning by osmosis, so to
speak, the skills of the craft … a well-guarded secret.” At the
other extreme is the “scientist style.” The future scientist learns
from a teacher who formulates knowledge and skill as explicitly
as possible through free interchange of knowledge and insights

– “being non-secretive is one of their rules of professional
conduct.” A physician and a physicist, respectively, are exam-
ples of people who, more often than not, practice the two styles.

However, “mathematicians are somewhere in between: math-
ematical results are published and taught quite openly, but
there is very little explicit teaching on how to do mathemat-
ics, and publishing besides the results also the heuristics that
led to them is regarded by many as ‘unscientific’ and there-
fore, bad style: quite often the editor’s censorship will try to
prohibit their publication.”

Dijkstra asks: "Where along this scale should we place the teaching
of programming?"

Twenty-two years before Kay’s 1997 comment, Dijkstra charm-
ingly alluded to coming trouble: “To make implicit knowledge
explicit … we should realize that changing a craft into a science, and
making public property of the secret knowledge of the guild, will always
cause the guild members to feel threatened. For many a ‘puzzle-minded’
virtuoso coder of the early sixties, the [recent] scientific development …
has been most unwelcome. … He feels like the medieval painter that
could create a masterpiece whenever his experience enabled him to
render proportion well, who suddenly found himself overtaken by all
sorts of youngsters, pupils of Albrecht Dürer and the like, who had been
taught the mathematical constructions that were guaranteed to surpass
his most successful, but intuitive renderings. And with nostalgia he
looks back to the good old days when his experience and feeling made
him an outstanding craftsman. And we should realize that, as far as
programming is concerned, the battle is still going on. -- "craftsmen"
[proposals] … had a pronounced anti-intellectualistic flavour: it
stressed that students should be taught how to solve the problems of ‘the
real world’ and that, therefore, the curriculum should pay as little
attention as possible to ‘abstract subjects.’”

Dijkstra advocated a blending of the two teaching styles.
The “disastrous blending, viz. that of the technology of the
craftsman with the pretence of the scientist” is not the solu-
tion because “the craftsman has no conscious, formal grip
on his subject matter, he just ‘knows’ how to use his tools.
If this is combined with the scientist's approach of making
one's knowledge explicit, he will describe what he knows
explicitly, i.e. his tools, instead of describing how to use
them! … It deserves a special warning because, besides
being disastrous, it is so respectable!”

His preferred blending: “As teachers of programming we should try
to blend the technology of the scientist with the pretence of the crafts-
man.” Sticking to the technology of the scientist means being
as explicit as we possibly can about as many aspects of our trade
as we can. “Now the teaching of programming comprises the teaching
of facts -- facts about systems, machines, programming languages etc.
-- and it is very easy to be explicit about them, but the trouble is that
these facts represent about 10 percent, of what has to be taught: the
remaining 90 percent is problem solving and how to avoid unmastered
complexity, in short: it is the teaching of thinking, no more and no less.”

Research

14 Condu¡t Spring | Summer 2010

Computing Science and Philosophy

“Experimental psychology, neurophysiology, and computer science may
turn out to be the best friends of traditional philosophy.” Gian-Carlo
Rota [10]

Perhaps the best way to explore the Dijkstra-Kay argument is to
detour briefly into philosophy. You may think it is impractical
and plays no role in computer science, but I would argue that the
philosophy of computer science is at the heart of their debate.

We begin with the great Gian-Carlo Rota, whose writings
matched the eloquence of Dijkstra. In his essay “The Perni-
cious Influence of Mathematics upon Philosophy,” Rota
showed us the parallels between the double life of mathemat-
ics and the double life of philosophy. (We will talk about the
double life of computer science as well.)

Rota characterized the double life of mathematics as truth
and proof. “In the first of its lives mathematics deals with facts,
like any other science,” he wrote. “The facts of today’s mathe-
matics are the springboard for the science of tomorrow.” In its
second life, Rota wrote, mathematics deals with proofs. “Every
fact of mathematics must be ensconced in an axiomatic theo-
ry and formally proved if it is to be accepted as true.”

In contrast, “In its first of its lives, philosophy sets itself the task
of telling us how to look at the world. … Philosophical de-
scription make us aware of phenomena that lie at the other
end of the spectrum of rationality that science will not and
cannot deal with.” Then “In its the second life, philosophy,
like mathematics, relies of method of argumentation that
seems to follow the rules of some logic.”

But philosophy “has not been quite as comfortable with its
double life,” Rota wrote. In its first, philosophy “sets itself the
task of telling us how to look at the world … making us aware of
phenomena that lie at the other end of the spectrum of ratio-
nality that science will not and cannot deal with. The assertions
of philosophy are less reliable than assertions of mathematics
but they run deeper into the roots of our existence. Philosophi-
cal assertions of today will be the common sense of tomorrow.”

Axiom 0: Goddess Reason
In its second life, “philosophy, like mathematics, relies on a
method of argumentation that seems to follow the rules of
some logic,” but – unlike mathematics – the rules have “never
been clearly agreed upon by philosophers, and much of the

philosophical discussion since its Greek beginnings has been
spent on method,” Rota wrote. “Philosophy’s relationship with
Goddess Reason is closer to a forced cohabitation than to the
romantic liaison which has always existed between Goddess
Reason and mathematics.”

Are we to believe that Professor Kay would issue a restraining
order to keep Goddess Reason from darkening computer
science’s door?

Axiom 1: Philosophical disclosures are met
with anger that we reserve for the betrayal
of our family secrets
Rota: “Philosophical arguments are emotion-laden to a great-
er degree than mathematical arguments and written in a style
more reminiscent of a shameful admission than of a dispas-
sionate description. Behind every question of philosophy
there lurks a gnarl of unacknowledged emotional cravings
which act as a powerful motivation for conclusions in which
reason plays at best a supporting role. To bring such hidden
emotional cravings out into the open, as philosophers have
felt their duty to do, is to ask for trouble. Philosophical disclo-
sures are frequently met with anger that we reserve for the
betrayal of our family secrets.”

When Jonathan Edwards, a research fellow with the Software
Design Group at MIT, was asked to contribute a chapter to
Beautiful Code, published in 2007 by O’Reilly, he declined.

“Beauty is an idealistic fantasy,” he later explained on the blog Alarm-
ing Development [11] “I hope that someday we will discover such
principles. But in the meantime software design is still a matter of
wisdom, not knowledge, and is therefore largely unteachable.”

He confided: “I am having trouble with this assignment. Telling an
inspiring story about a beautiful design feels disingenuous. Yes, we all
strive for beautiful code. But that is not what a talented young pro-
grammer needs to hear.”

Then, as if betraying a family secret, he wrote: “I wish someone had
instead warned me that programming is a desperate losing battle
against the unconquerable complexity of code, and the treachery of
requirements. I can’t teach you how to design beautiful code, because I
don’t know how myself. I may have managed to get a few things
almost right. … A lesson I have learned the hard way is that we
aren’t smart enough. … and above all to prize simplicity. Another
lesson I have learned is to distrust beauty. It seems that infatuation

15 Condu¡t Spring | Summer 2010

Research

with a design inevitably leads to heartbreak, as overlooked ugly
realities intrude. Love is blind, but computers aren’t. A long-term
relationship – maintaining a system for years – teaches one to appreci-
ate more domestic virtues, such as straightforwardness and conven-
tionality. Beauty is an idealistic fantasy: what really matters is the
quality of the never-ending conversation between programmer and
code, as each learns from and adapts to the other. Beauty is not a
sufficient basis for a happy marriage.”

Axiom 2: Dictatorship of Definitiveness
Rota: “Philosophers in this century have suffered more than
ever from the dictatorship of definitiveness. The illusion of
the final answer, what two thousand years of Western philoso-
phy failed to accomplish.”

Axiom 3: Inevitability of Failure
Rota: “A dispassionate look at the history of philosophy disclos-
es two contradictory features: first, these problems [of philoso-
phy] have in no way been solved, nor are they likely to be
solved as long as philosophy survives; and second every philos-
opher who has ever worked on any of these problems has
proposed his own ‘definite solution,’ which has invariantly
been rejected by his successors. … Philosophers of the past
have repeatedly stressed the essential role of failure in philoso-
phy. The failure of philosophers to reach any kind of agree-
ment does not make their writings any less relevant to the
problems of our day. We reread with interest the mutually
contradictory theories of mind that Plato, Aristotle, Kant and
Comte have bequeathed to us, and find their opinions timely
and enlightening, even in problems of artificial intelligence.”

Axiom 4: The Myth of Precision
Rota: “The prejudice that a concept must be precisely defined
in order to be meaningful, or that an argument must be pre-
cisely stated in order to make sense, is one of the most insidi-
ous of the twentieth century. … Looked from the vantage point
of ordinary experience, the ideal of precision seems preposter-
ous. Our everyday reasoning is not precise, yet it is effective.
Nature itself, from the cosmos to the gene, is approximate and
inaccurate. … The ideal of precision in philosophy has its roots
in a misunderstanding of the notion of rigor.”

We misunderstand the concepts of philosophy if we force them
to be precise. One insightful metaphor due to Wittgenstein is
that philosophical concepts are like the winding streets of an old
city, which we must accept as they are, and which we must famil-
iarize ourselves with by strolling through them while admiring
their historical heritage. [12]

Axiom 5: Appeal to Psychology
Rota: “ … to justify their neglect of most of the old and substan-
tial question of philosophy [they argue] that many questions
formerly thought to be philosophical are instead ‘purely psycho-
logical.” … Experimental psychology, neurophysiology, and
computer science may turn out to be the best friends of tradi-
tional philosophy. The awesome complexities of the phenome-
na that are being studied in these sciences have convinced
scientists (well in advance of philosophical establishment) that
progress in science will depend on philosophical research in the
most classical vein.”

“And if I have to describe the influence PL/1 can have on its users, the
closest metaphor that comes to my mind is that of a drug. I remember
from a symposium on higher-level programming language a lecture
given in defense of PL/1 by a man who described himself as one of its
devoted users. But within a one-hour lecture in praise of PL/1 he
managed to ask for the addition of about fifty new "features," little
supposing that the main source of his problems could very well be that
it contained already far too many "features." The speaker displayed
all the depressing symptoms of addiction, reduced as he was to the
state of mental stagnation in which he could only ask for more, more,
more. ... When FORTRAN has been called an infantile disorder, full
PL/1, with its growth characteristics of a dangerous tumor, could turn
out to be a fatal disease.” – Dijkstra [13]

Axiom 6: The Illusion of Definitiveness
Rota: “The results of mathematics are definitive. No one will
ever improve on a sorting algorithm which has been proved
best possible. … Mathematics is forever. … The problems of
philosophy are the least likely to have ‘solutions.’ ... The reality
we live in is constituted by a myriad contradictions, which
traditional philosophy has taken pains to describe with coura-
geous realism. But contradiction cannot be confronted by
minds who have put all their eggs in the basket of precision and
definitiveness. The real world is filled with absences, absurdities,
abnormalities, aberrances, abominations, abuses, with Abgrund.”

A Critic’s Dilemma

In my previous Conduit article about Dijkstra (part 1) [14], I
derived (with a slightly different notation) a “criticism equa-
tion”: E=mc2 In the equation, the impressionistic quantities
are: “E” is the “energy” of criticism, “m” is the “substance” of
the critical message, and “c” the “authority” of the critic. Well,
Kay’s Turing award surely qualifies him for authority, but his m
is so small that he got no E at all. There are two obvious desid-
erata for a conscious critic that creates a dilemma for her as
they are somewhat in conflict. The first axiom, “non-dema-
gogy,” says that you should be critical only in areas where you
have significant and recognized achievements. The second
axiom, “non-personal,” says that the critique is more effective
when it stays away from the personal biases of the critic. The
higher your achievement in an area, the tougher your criticism
could be of lesser achievers, so you clearly are biased in your
critique towards your kind, failing to satisfy the second axiom.
The Spartan criticism of Dijkstra, hard to take by many, is at
the root of the “disabling prejudices.” He lived a Spartan life,
holding himself first at the same high standards that he used
to critique others’ shortcomings.

“As a scientist Dijkstra was a model of honesty and integrity.
Most of his publications were written by him alone. The few
publications that he wrote jointly with his colleagues bear the
unmistakable trait of his writing style. He never had a secretary
and took care of all his correspondence alone. He never
sought funds in the form of grants or consulting and never
lent his name to the initiatives to which he would not contrib-
ute in a substantial way. When colleagues prepared a Festschrift
for his sixtieth birthday, published by Springer-Verlag, he took
the trouble to thank each of the 61 contributors separately, in
a hand-written letter. His supreme self-confidence went

Research

16 Condu¡t Spring | Summer 2010

FEAR
In 1984, soon after my family fled to the United States, I
began telling my friends about life in communist Romania
– hard-to-believe stories from a weird world of dictatorship
and limited freedom. I told them about the Carpathian
president who forced people to attend rallies and chant his
name. I described a government composed entirely of the
Carpathian’s family members; long lines at supermarkets
whose shelves were barely stocked; mile-long lines of cars
waiting a turn at the gas pump; spending the night in line so
that the next morning we could claim our two-bottle ration of
milk – available only to parents with young children.

This crazy dictator had a wife who, though only a lab
technician in a pharmaceutical research institute, somehow
managed to earn her Ph.D. in chemistry in just six months.
What an achievement, the newspapers declared. She was
immediately promoted to director of the pharmaceutical
research institute, where she was listed as co-author -- and
first author – of the hundreds of papers published annually by
the institute. But just in case this did not do justice to her
leadership, her name was listed in bold-faced type that was
double the size of the other authors.

How can one not promote such a talent to a position aligned
well with her stature? It may come as no surprise that the
dictator’s wife was appointed Minister of Science. Newspa-
pers celebrated the achievement with patriotic pride, and
noted that no one had anything critical to say about the
appointment, at least on the record.

Our new friends had difficulty believing our stories. Why was
no one brave enough to stand up to the regime, they
wondered? Such a thing could never happen here in the
United States, they said. Could it?

It is hard to talk about fear. I wished for a metaphor, a story
to offer my friends as a way to defend my seemingly fearful
compatriots. We dealt with the daily problems by telling
political jokes – oh, the safe haven of artistic ambiguity! –

a folkloric form of prolific and creative protest that occasion-
ally got some of us called up to a certain office where we
were told that “on so and so day you told a joke about … we
are concerned about you …”

One thing about dictators: Their time for justice comes. That
Carpathian dictator and his wife were executed in the
revolution. It is said that the members of the execution
platoon could not restrain themselves when they marched to
execute the couple; some starting shooting before reaching
the wall.

They say that patriotism is the last refuge
To which a scoundrel clings
Steal a little an' they throw you in jail
Steal a lot an' they make you king
There's only one step down from here, babe
It's called the land of permanent bliss
What's a sweetheart like you doin'
in a dump like this.

Bob Dylan [16]

“Funding in genomics is measured in nano-Landers!” was a
colleague’s attempt at survival humor at a recent computa-
tional biology conference. The similarity with the nano-Dijk-
stras quote is only that. These two cannot be more opposite! I
am afraid that just about now, the nano could become pico.

Afraid? I guess there are many types of fear. Fear of losing
freedom scars you. It wasn’t until 2002 that I recognized
something similar in the United States. I was working at
Celera Genomics, and from time to time we would receive in
secret a message from a genomic scientist of stature – an
apology for the actions of some of his colleagues. Clearly
genomics people were afraid to say positive things in public
about Celera for fear of losing their research freedom. I
recognized this fear from the experiences in Romania
that I was trying to forget. This time, though, I was in the
communist republic of genomics.

together with a remarkably modest lifestyle, to the point of
being spartan. His and his wife’s house in Nuenen is simple,
small and unassuming. He did not own a TV, a VCR or a
mobile telephone, and did not go to the movies. In contrast,
he played the piano remarkably well” [15].

As I put the final touches on this article, the recent announce-
ment of Grigory Perelman’s solution of the Poincare Conjecture
marked another illustration that we must work on what we love.
His is a victory of doers over talkers, a victory of the deep theory
scientists over craftsmen. We should all celebrate Perelman’s
achievement and his receipt of the $1 million Clay Mathemati-
cal Millennium Prize.

“The question ‘What is Mathematics?’ is as unavoidable and as
unanswerable as the question ‘What is Life?’ In actual fact I
think it’s almost the same question.” Dijkstra [15]

Dijkstra’s Axioms:

Axiom 0: Life = Mathematics
Axiom 1: Computer Science = Mathematics + Murphy’s
Law
Axiom 2: Beauty is Our Business
Axiom 3: Simplicity is a prerequisite for reliability

17 Condu¡t Spring | Summer 2010

Research

Father-in-law vs. Pajamas

I sent a silly game of my own to Professor Dijkstra
but it has never been published before. I am
including it here asking for algorithmic solutions, and
offer a prize for their optimal algorithmic solutions,
but they have to be “in your head” solutions. The
Prize, like the ones I use for my students solving
the most difficult parts of the extra credit homework,
a slice of Providence’s famous, Pastiche Fruit Pie.
Write to me at and I will publish
winners in the next issue of the Lighthouses.

A Silly Game
A story. A young man lives with
his father-in-law, a very active
retired man. Among the duties
of the father-in-law at home was
to wash dirty laundry. It follows
that he washes the son-in-law's
pajamas too. The son-in-law’s N
clean pajamas, all different, are stored on a certain
shelf S, in a white closet. They are arranged, as usual,
in one stack as shown in Fig.1 stack S of pajamas
Let B be the basket where the used pajamas are
deposited in order to be cleaned. The son-in-law is a
very absent-minded young man, and when he changes
his pajamas, he acts as follows: throws the used
pajamas in B, and puts on the pajamas from the top
of S. As already mentioned, the father-in-law is very
active, so he puts the laundry in the washing machine
as soon as they occur in B. That is, till the washing

moment no more than one pajamas has time to
appear in B. After washing, the pajamas are returned
immediately to the top of S.

After some time (say, years), at a moment when
the son-in-law comes to change his pajamas, he
discovers a very strange thing: the pajamas he is
wearing and the one from the top of S are extremely
worn out, while the rest of pajamas are almost new!
Then he understood that all the time he has been
wearing these two sets of pajamas. The explanation
can be obtained as follows: while the son-in-law
was wearing pajama 1 the father-in-law quickly
washed pajama 2 and placed it on top of S. When
he changed the pajamas, he took pajama 2 and put
pajama 1 in B which ended up on top of S, and so
on. The son-in-law has been wearing the sequence of
pajamas 1,2,1,2,1,2 … Our first problem is how to
avoid this unfair wearing of pajamas. Let us define a
fair wearing of the N pajamas to be a sequence of N
pajamas that is any permutation of them.

The Problem. Give an algorithm (if possible the
simplest; solvable in your head) for a fair wearing of
the pajamas. There is a caveat (inspired by the real-life
situation): no communication between son-in-law and
father-in-law should be required.

The story, continued. The son-in-law discovered the
optimal algorithm for Problem 1. He started using it,
so everything seemed to be okay. However, a happy
event brought some changes. A son was born. Among
the reorganizations involved in the house was the one
concerning the clothes. Now, the son-in-law’s pajamas
were assigned to a small
shelf. The pajamas were
now arranged in several
stacks, say M stacks of
maximum height K.

Concerning washing, the father-in-law acts now… non-
deterministically. He returns the washed pajamas to
the top of any stack he wishes. The nondeterministic
return proves troublesome. A new algorithm is needed
for the problem. Find the two optimal algorithms for
the two versions of the problem.

References
1. E.W. Dijkstra, EWD 1213: “Introducing a Course on Calculi” (1995)

2. E.W. Dijkstra, EWD 1036, “On the Cruelty of Really Teaching
Computing Science” (1988)

3. E.W. Dijkstra, EWD 498, “How Do We Tell Truths that Might Hurt”
(1975)

4. E.W. Dijkstra, EWD 1166, “From My Life (Written Because People
Ask Me for These Data)” (1993)

5. E. W. Dijkstra, EWD 666, “A Problem Solved in My Head” (undated)

6. Transcript of YouTube video at
http://www.youtube.com/watch?v=s7ROTJKkhuI

7. E.W. Dijkstra, EWD 1227, “A Somewhat Open Letter to David Dries”
(1995)

8. John von Neumann, “The Mathematician,” published in Works of the
Mind Vol. 1, No. 1 (University of Chicago Press, Chicago, 1947)

9. E. W. Dijkstra, EWD 480, “Craftsman or Scientist?” (1975)

10. G.C. Rota, “The Pernicious Influence of Mathematics upon
Philosophy” (1991)

11. From J. Edwards’ blog, Alarming Development,
http://alarmingdevelopment.org

12. E. W. Dijkstra, EWD 340, “The Humble Programmer” (1972)

13. S. Istrail, “Storytelling About Lighthouses: Criticizing Professor
Dijkstra Considered Harmless,” Conduit, v.17 no. 2. (2009)

14. K.R. Apt, “Edsger Wybe Dijkstra (1930–2002): A Portrait of a
Genius,” Formal Aspects of Computing (2002)

15. E.W. Dijkstra, EWD 720, “Why Correctness Must Be a Mathematical
Concern” (1979)

16. B. Dylan, “Sweetheart Like You”

