Regular Expressions

Regular Expressions Regular expressions describe regular languages

Example: $(a+b\cdot c)^*$

describes the language $\{a, bc\}^* = \{\lambda, a, bc, aa, abc, bca, ...\}$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

A regular expression: $(a+b\cdot c)*\cdot(c+\emptyset)$

Not a regular expression: (a+b+)

Languages of Regular Expressions

L(r): language of regular expression r

Example

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, ...\}$$

Definition

For primitive regular expressions:

$$L(\emptyset) = \emptyset$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2 $L(r_1 + r_2) = L(r_1) \cup L(r_2)$ $L(r_1 \cdot r_2) = L(r_1) L(r_2)$

 $L(r_1 *) = (L(r_1))*$

 $L((r_1)) = L(r_1)$

Costas Busch - RPI

Example Regular expression: $(a+b) \cdot a^*$

$$L((a+b) \cdot a^{*}) = L((a+b))L(a^{*})$$

= $L(a+b)L(a^{*})$
= $(L(a) \cup L(b))(L(a))^{*}$
= $(\{a\} \cup \{b\})(\{a\})^{*}$
= $\{a,b\} \{\lambda,a,aa,aaa,...\}$
= $\{a,aa,aaa,...,b,ba,baa,...\}$

Costas Busch - RPI

Regular expression r = (a+b)*(a+bb)

$L(r) = \{a, bb, aa, abb, ba, bbb, \dots\}$

Regular expression $r = (aa)^*(bb)^*b$

$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$

Regular expression r = (0+1)*00(0+1)*

$L(r) = \{ all strings containing substring 00 \}$

Regular expression $r = (1+01)*(0+\lambda)$

$L(r) = \{ all strings without substring 00 \}$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$

L = { all strings without substring 00 }

$$r_{1} = (1+01)^{*}(0+\lambda)$$

$$r_{2} = (1^{*}011^{*})^{*}(0+\lambda) + 1^{*}(0+\lambda)$$

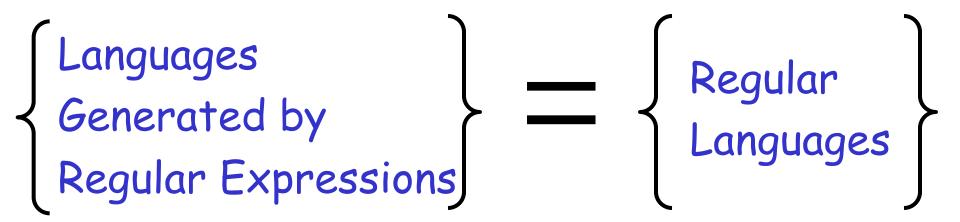
$$r_{1} \text{ and } r_{2}$$

$$L(r_1) = L(r_2) = L$$

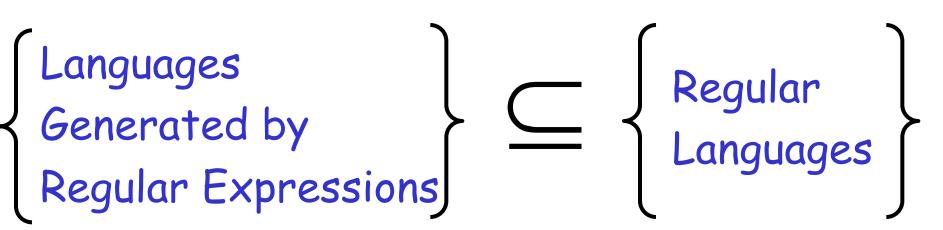
 r_1 and r_2 are equivalent regular expressions

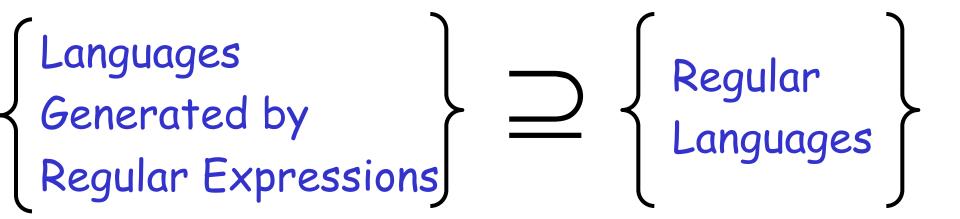
Regular Expressions and Regular Languages

Theorem



Proof:





Proof - Part 1

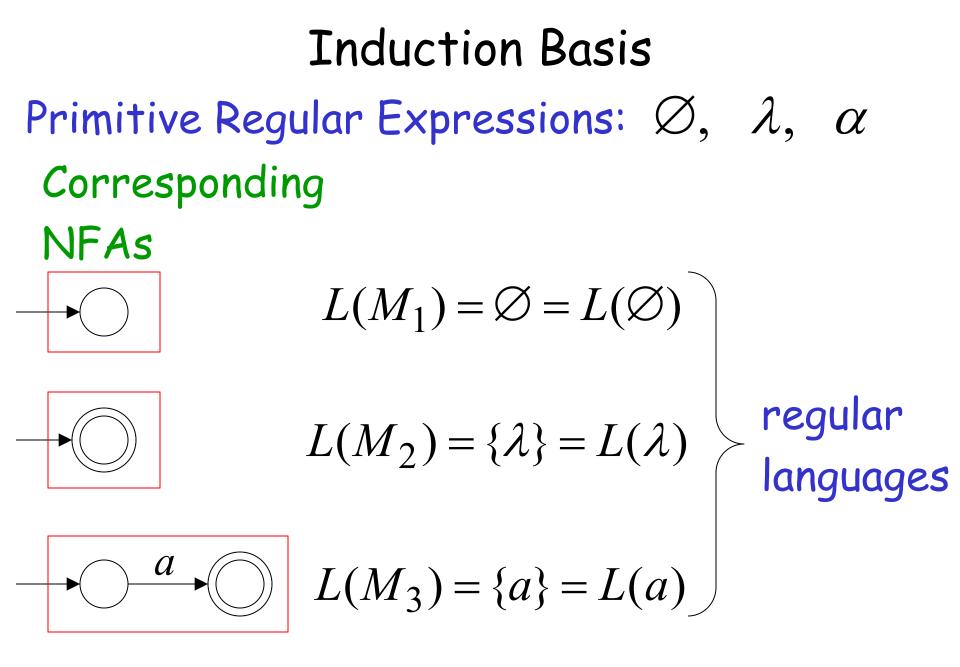
 Languages
 Regular

 Generated by
 Languages

 Regular Expressions
 Languages

For any regular expression rthe language L(r) is regular

Proof by induction on the size of r



Inductive Hypothesis

Suppose that for regular expressions r_1 and r_2 , $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step We will prove: $L(r_1 + r_2)$ $L(r_1 \cdot r_2)$ Are regular Languages $L(r_1 *)$ $L((r_1))$ Costas Busch - RPI

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know: $L(r_1)$ and $L(r_2)$ are regular languages

We also know: Regular languages are closed under: Union $L(r_1) \cup L(r_2)$ Concatenation $L(r_1)L(r_2)$ Star $(L(r_1))*$

Therefore:

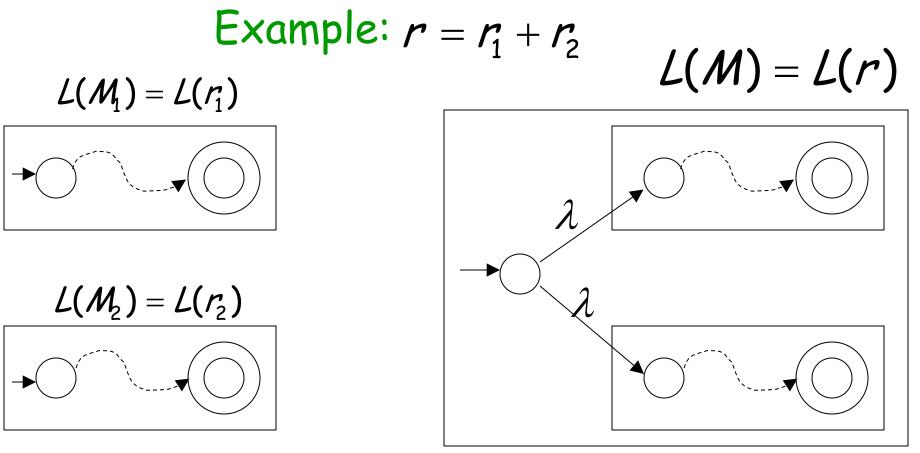
 $L(r_1 + r_2) = L(r_1) \cup L(r_2)$ Are regular $L(r_1 \cdot r_2) = L(r_1) L(r_2)$ languages $L(r_1 *) = (L(r_1))*$

 $\mathcal{L}((r_1)) = \mathcal{L}(r_1)$

is trivially a regular language (by induction hypothesis)

End of Proof-Part 1

Using the regular closure of these operations, we can construct recursively the NFA M that accepts L(M) = L(r)



Fall 2006

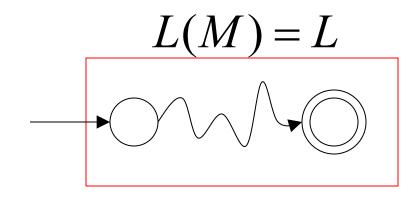
Costas Busch - RPI

Proof - Part 2

{Languages
Generated by
Regular Expressions} \Box \begin{bmatrix} Regular & Regular & Languages \\ Languages \end{bmatrix} \end{bmatrix}

For any regular language L there is a regular expression r with L(r) = L

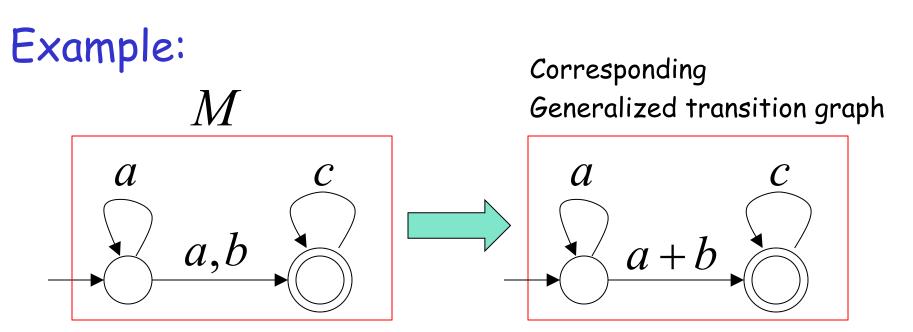
We will convert an NFA that accepts L to a regular expression Fall 2006 Costas Busch - RPI Since L is regular, there is a NFA M that accepts it

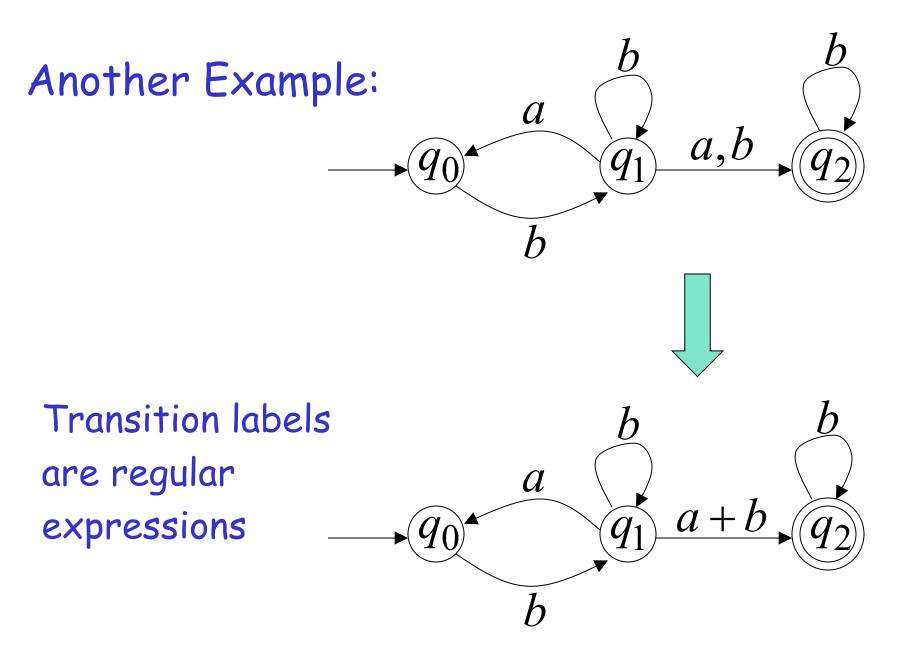


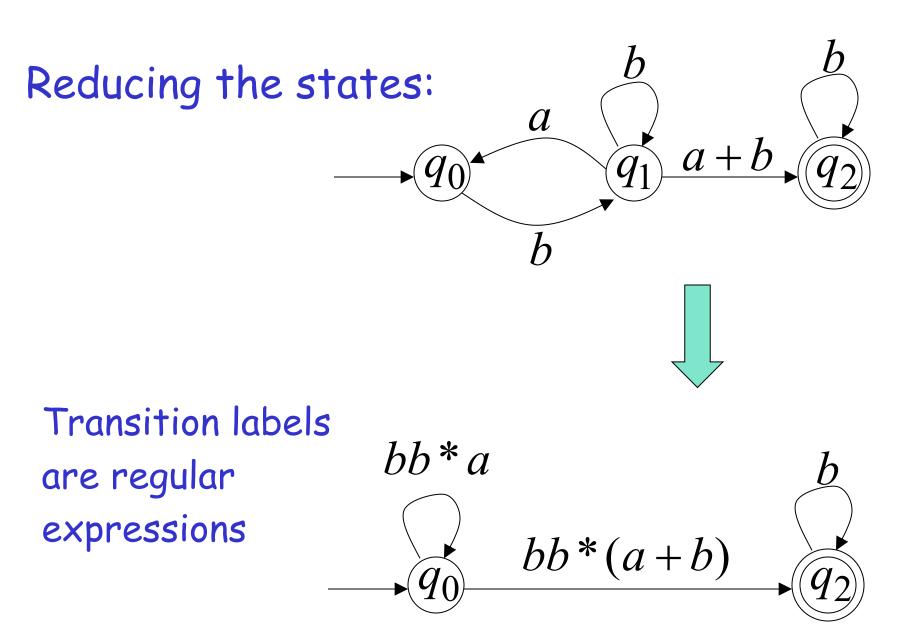
Take it with a single final state

From M construct the equivalent Generalized Transition Graph

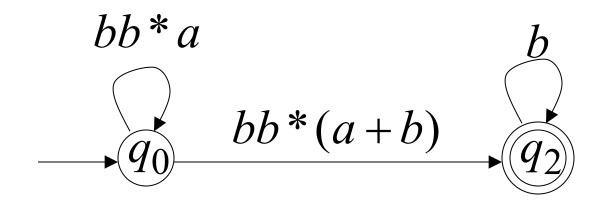
in which transition labels are regular expressions







Resulting Regular Expression:



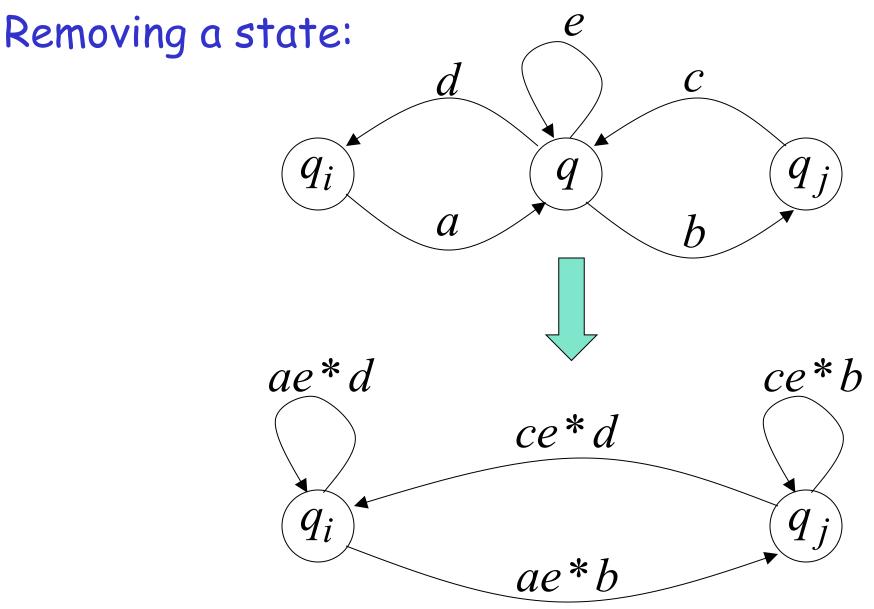
r = (bb * a) * bb * (a + b)b *

L(r) = L(M) = L

Fall 2006

Costas Busch - RPI

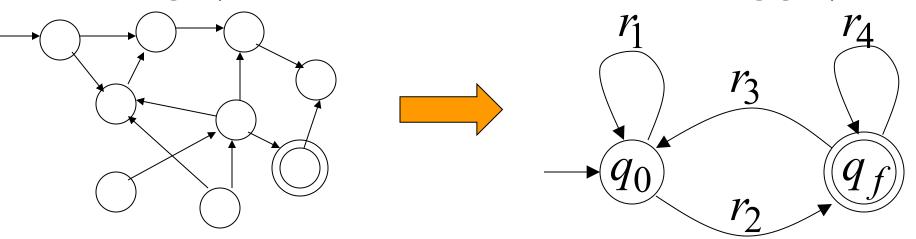
In General



By repeating the process until two states are left, the resulting graph is

Initial graph

Resulting graph



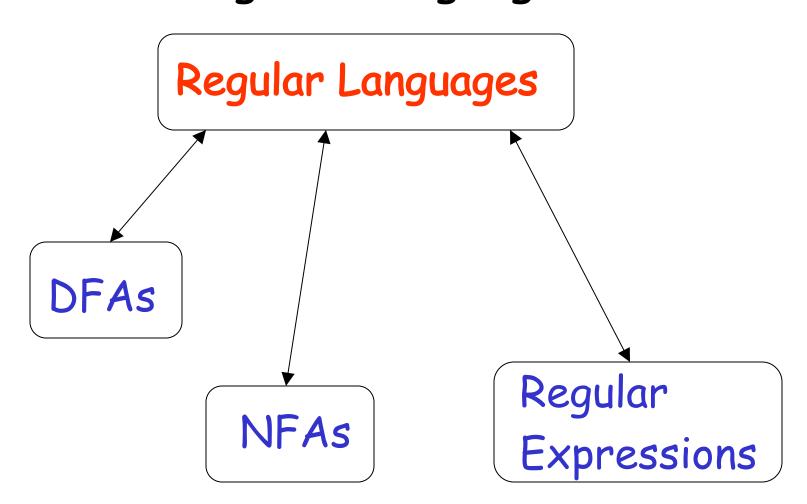
The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$
$$L(r) = L(M) = L$$

Fall 2006

Costas Busch - RPI

Standard Representations of Regular Languages



When we say:We are givena Regular LanguageL

We mean: Language L is in a standard representation

(DFA, NFA, or Regular Expression)