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A dynamic programming algorithm to find all optimal alignments of DNA subsequences is 
described. The alignments use not only substitutions, insertions and deletions of nucleotides but 
also inversions (reversed complements) of substrings of the sequences. The inversion alignments 
themselves contain substitutions, insertions and deletions of nucleotides. We study the problem 
of alignment with non-intersecting inversions. To provide a computationally efficient algorithm 
we restrict candidate inversions to the K highest scoring inversions. An algorithm to find the J 
best non-intersecting alignments with inversions is also described. The new algorithm is applied 
to the regions of mitochondrial DNA of Drosophila yakuba and mouse coding for URF6 and 
cytochrome b and the inversion of the URF6 gene is found. The open problem of intersecting 
inversions is discussed. 

1. Introduction. DNA sequence data continue to have a profound effect on 
biology. The information content of genes is revealed in DNA sequence and, 
consequently, inferences can be made about the relatedness of genes or more 
generally about segments of DNA sequences. The sequences under study can 
be found in different species such as human, chimpanzee and gorilla where a 
question is to determine the closest relative to humans. The sequences can be of 
the same gene chosen from members of a population, such as the ADH gene of 
Drosophila. Finally the sequences can be related genes from a single organism, 
such as e, ~ and 6 hemoglobin genes. In examples such as we have given the 
sequences must be compared and similar or homologous positions identified. 
Due to the large data set (over 50 x 10 6 base pairs of sequence are in DDBJ, 
EMBL and GenBank as of spring 1991) and the combinatorial nature of 
sequence alignment, DNA and protein sequences are usually compared and 
aligned using an algorithm implemented on a computer. 

Dynamic programming algorithms are a method of choice for sequence 
comparison. Other methods such as FASTA are used in database searches 
because of speed and even these methods use dynamic programming at one 
stage (Pearson and Lipman, 1988). The standard dynamic programming 
sequence alignment algorithms produce alignments that maximize a specific 
objective function. The objective function or score is the sum of weighted 
matches and mismatches, usually with negative weights for insertions and 
deletions. The resulting alignments give explicit relationships between the 
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sequences; the substitutions, insertions and deletions required to transform one 
sequence into another. See Waterman (1984, 1989) for a general discussion of 
these topics. 

While dynamic programming is often used for sequence comparison, there 
are some drawbacks. One is the limitation of the evolutionary transformations 
to substitutions, insertions and deletions. Duplications and inversions are 
common events in molecular evolution (Howe et al., 1988; Zhou et al., 1988). 
Although Wagner (1983) has studied sequence comparison with inversions of 
adjacent letters, his results are negative since including inversions is very costly 
in terms of computer time. Also his inversions are transpositions of adjacent 
letters, transformations of much less interest to us than inversions of longer 
segments of DNA. Therefore including inversions has seemed computationally 
impractical, and there has been no other rigorous work since Wagner. In this 
paper we take a different approach and give a practical solution to sequence 
comparison with non-overlapping inversions. 

2. Dynamic Programming. Needleman and Wunsch (1970) introduced the 
first dynamic programming algorithm for sequence comparison. It was recast 
in its present form in Smith et al. (1981) where similarity and distance 
algorithms were shown to be equivalent or duals of one another. Here we study 
similarity algorithms. For explicitness let a = ala  2 . . .  a, and b = bib 2 . . .  b,, be 
two DNA sequences. Ifa and b are letters of the individual sequences, s(a, b) is a 
real valued function. Gaps are inserted by insertion of "-". Gaps of k 
contiguous letters are given negative weight w(k) and were introduced by 
Waterman et al. (1976). In the case w(k) = kw(1) the objective function is easy to 
write out. Insert "-" in a and in b so that the new sequences a* and b* are of the 
same (finite) length. The alignment: 

a l  a 2 . . .  a t 

b~ b * . . .  b* 

should not have two aligned "- 's .  Thus max{n, m} <~L<~n+m. Set: 

A(a*,  b*)=  ~ s(a* b*) 

where s(-, b) = s(a, -)  = w(1). Now the score S(a, b) for best alignment of a with 
b is defined by: 

S(a, b) = max A(a*, b*) 
d 

where ~ is the set of all alignments. If w ( k ) #  kw(1), some modifications must 
be made to the definition. 
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The beauty of dynamic programming is that it provides a simple recursion to 
compute S(a, b). Set: 

S(i,j)= S(ala 2 . . .  a i ,  b ib2 , . . ,  bj) 

where S(O, O) = O, S(O, j) = S(-, b 1 . . .  b~) = w(j) and S(i, O) = w(i). Then: 

S( i , j )=max~S( i -  1 , j -  1)+s(ai, b j), max {S( i -k , j )+w(k)} ,  
( l<~k<~i 

max {S(i , j - l)+w(1)}}.  (1) 
1 <~l<~j 

Of course S(n, m) = S(a, b). This algorithm takes time O(n2m + m2n) or O(n 3) if 
n =  m. In the case of a linear weight function w(k)= ~ +  ilk, there is a nice 
reduction of computing time to O(n 2) due to Gotoh (1982): 

E(i , j )=max{E(i -  1, j )+f l ,  S ( i -  1 , j ) + ~ + f l }  

F(i , j )=max{F(i , j -  1)+fl,  S(i,j-- 1)+~+f l}  

and 

S(i, j) = max { S ( i -1 ,  j - 1 )  + s(a~, b j), E(i, j), F(i, j) }. (2) 

In view of the mosaic nature of molecular sequences, the sequence alignment 
problem of current interest is usually that of finding significant alignments of 
segments (contiguous subsequences) of the two sequences. Such alignments are 
known as local alignments. Smith and Waterman (1981) showed that a simple 
modification of (1) gives a solution to the local alignment problem. The local 
alignment problem is to find all alignments which have score: 

H(a, b)=max{S(a,a,+ 1 . . .  av, bxbx+ 1 . . .  br): 1 <~u<~v<<.n, l <~x<<.y<~m}. 

The algorithm can be obtained from H(0, 0) = H(i, 0) = H(0, j) = 0 for 1 ~< i ~< n, 
1 ~<j ~< m, and: 

H(i, j) = m a x { H ( / -  1, j -  1) + s(ai, b j), max {H( i -  k, j) + w(k)}, 
l <~k<~i 

max {H(i, j--  l) + w(/)}, 0}. (3) 
l<~l<~j 

The O(n 2) improvement for w(k )=~+ik  yields: 

E(i, j) = m a x { E ( / -  1, j) + i ,  H ( i -  1, j) + ~ + fl} 

F(i, j)=max{F(i, j--  1 ) + i ,  n ( i , j -  1) + 0~+i} 

H(i , j )=max{H( i - j , j -1 )+s (a i ,  bj), E(i,j), F(i,j), 0}. (4) 

Of course H(a, b) = max{H(/, j): 1 ~< i ~< n, 1 ~<j ~< m}. 
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In Waterman and Eggert (1987) a method was introduced to produce the 
2nd, 3 r d , . . . ,  Kth best segment or local alignments as well as the best. The 
succeeding alignments are not allowed to have aligned pairs (ai/bj) in common. 
The computing time of the Waterman and Eggert method is O(nZ+ ~/~= 1L~), 
where L~ is the length of the/ th  best alignment. Since we can compute as many 
non-intersecting alignments as desired, it is necessary to have an explicit 
criterion for accepting an alignment. Therefore, we now turn to a discussion of 
the statistical distribution of alignment scores., 

It is a clich6 that our ability to compute exceeds our ability to understand. In 
the present context, we can compute alignments that look good to us but might 
be no better than expected from random sequences. Since the goal of sequence 
alignment is to find interesting biology, it is desirable to screen out alignments 
that are not statistically significant. The solution is often Monte Carlo 
simulation. Some progress has been made on theoretical aspects of the problem 
(Waterman et al., 1987; Arratia et al., 1990). Detailed results are known for the 
length of the longest run of identical letters (matches) as well as the longest 
match with r mismatches. Recently this work has been generalized to the 
distribution of the longest run with e proportion of matches where 
~>P(match)(Arrat ia  et al., 1990). This work rests on recent advances in 
Poisson approximation (Arratia et al., 1989). There are two lines of study for 
local algorithms with general scoring schemes. Arratia et al. (1988) provided 
strong laws for the score as well as the statistical distribution of letters in the 
alignment. Karlin and Altschul (1990) give the results for more general scoring 
schemes as well as a Poisson approximation to assess statistical significance. 
Another approach appears in Waterman et al. (1987). For: 

a4=b 

and w(k)= - 6 k ,  it is known that, except for points on a curve in (g, 6), 
either: 

P (  lim H(n, n)/n=c)= l 

o r  

P ( l i m  H(n, n)/log(n)=d)= 1. 

The idea is that whenever # and 6 are "large enough" H(n, n) behaves like 
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log(n). The results on score distribution provide us with a rich if still incomplete 
theory for determining statistical significance of alignment scores. 

The Poisson approximation arises in the following way. Set a test value t and 
compute alignments satisfying {H> t}. The Waterman and Eggert algorithm 
for the Kbest  alignments requires the alignments to be disjoint; in the language 
of Arratia et al., the events are declumped. Let Z equal the number of 
alignments {H> t} produced by this method, and let 2 = E(Z). Order the scores 
by size: 

H(z) ~ H ( z _  ~) <. " " <~ H(I ) .  

Define: 

T=max{S(xlx2 . . .  xi, Yl, Y 2  �9 ""  Y j ) :  i<~n, j<~m}. 

The first Poisson approximation result states: 

P(H(I ) ~< x) ~ e - ~P(T > ~) 

The remaining order statistics have approximate distribution: 

j -  1 (2p(T>x))i  
P(H~i)<~x)~e-aV(r>x) ~ i! 

i=0  

This result can be rigorously proved for the case of no indels and no 
mismatches. See Goldstein and Waterman (1992) for a generalization to 
mismatches. We have presented these results here since we use the largest 
scores in our new algorithm. Below we compute the K best local alignments as 
input to our new algorithm. Since we cannot estimate P(T> x), the formula for 
P(/-/(j) ~< x) cannot be used directly. 

3. Inversions. Our first goal is to describe a dynamic programming algorithm 
for optimal alignment of two DNA sequences with substitutions, insertions, 
deletions and inversions. An inversion of a DNA sequence is defined to be the 
reverse complement of the sequence. While the number of inversions is not 
restricted, the inversions will not be allowed to intersect one another. Later we 
will discuss the case of intersecting inversions. While we could describe other 
versions of our algorithm, including full or global sequence alignment, here we 
present the local alignment algorithm with a linear gap weighting function. 
This is probably the most useful version of the method. 

When we allow inversions, we must realize that the inverted regions will not 
exactly match and must themselves be aligned. In addition one of the inverted 
regions must be complemented to preserve the polarity of the DNA sequence. 
Let us define: 
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Z ( g ,  h; i , j )  = Sl(agao+ 1 . .  �9 ai, b jbj -  1 �9 �9 �9 bh), 

where A = T, C = G, (7 = C, and T =  A. In the original sequences the segments 
agag + 1 �9 �9 �9 ai and b h b  h + 1 �9 �9 �9 bj are matched after an inversion. This means that  
a g a g + l . . . a  i and b j b j _ l . .  "-fih are aligned. Z ( g , h ; i , j )  is indexed by the 
beginning (g, h) and ending (i, j) coordinates of the sequences in their original 
order. The function S~ is the al ignment score defined in equat ion (2) using the 
matching function s~ (a, b), and gap function w~ (k) = 71 + fl~k. Each inversion is 
charged an addit ional cost 7. The non-inverted al ignment uses matching 
function s 2 ( a  , b) and gap function w2(k)--~2 + f12 k" 

The recursion for the best score W, with inversions, is given in the following. 

Algori thm: Al l  inversions. 
set U(i, j)  -- V(i, j)  = W(i, j) -- 0 if i -- 0 or j = 0. 
for j = l  to m, 

for i = 1 to n. 
{ U(i, j) = max{ U(i--  1, j) + f12, W( i - -  1, j) + (~2 ~- f12} 

V(i, j) = max{ V(i, j - -  1) + fl~, W(i,  j -  1) + c~ 2 + flz } 
for h = j  to 1 

for g = i to 1 
compute  Z(g ,  h; i , j) .  

W(i, j) = max{ max { W(9 - 1, h -  1) + Z(g ,  h; i, j)} + ~, 
l<~g<~i 
l<~h<~j 

W(i, -- 1, j -- 1 ) + s 2 (ai, b j), U(i, j) ,  V(i, j), 0}. (5) 

} 
best inversion s c o r e = m a x { W ( i , j ) :  1 <.i<.n, 1 <~j<<.m}. 

The proof  that  the recursion gives the optimal  score for non-intersecting 
inversions follows the usual proof  for sequence al ignment (Theorem 1, 
Waterman,  1989). 

The system of recurrences in (5) is expensive in computa t ion  time. If 
Z(g ,  h; i , j )  is computed  for each (g, h) where 1 <~g<.i and 1 <.h<.j,  this takes 
time 0(i2j2) ,  and the full a lgori thm (5) takes time O(n6), when n = m. If general 
w(k) is used, the corresponding version of our  algori thm (5) takes time O(nT), 

i . \ , ,  when n = m. By storing values of Z(g, h; i, j) the "compute  Z(# ,  h; , j l step can 
be done in time O(1 ), so that  the full a lgori thm (5) can be executed in time O(n 4) 
and space O(n2). 

Clearly the algori thm (5) is too costly in time for any problem of interest. 
Essentially the reason for this is that  many  very poor  quality inversions are 
calculated and rejected. Biologists will only be interested in longer, high quality 
inversions (Howe et al., 1988; Zhou  et al., 1988). For tunate ly  there is a 
computat ional ly  efficient way to choose these inversions and dramatically 
speed up the al ignment algorithm. 
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We first apply the local algorithm with sl(a, b) and w l ( k ) = e  1 +f l lk  to the 
sequences a = a l  . . .  a, and the inverted sequence b ( i n v ) = b r n b  m_ 1 . - .  h i .  The 
extension of this algorithm from Waterman and Eggert (1987) gives the K best 
(inversion) local alignments with the property that no match or mismatch is 
used more than once in the alignments. Each time a best alignment is located 
the matrix must be recalculated to remove the effect of the alignment. If 
alignment i has length L i, the time required to produce the list 5e of the K best 
inversion alignments is O(nm + ~ = ~  L2). To reduce the time requirement we 
chose an appropriate value of K. To further reduce running time we could 
impose a score threshold C 1 chosen so that the probability two random 
sequences have a Kth best alignment score ~> C~ is small. See the discussion of 
statistical significance in Section 2. 

Algorithm; Best inversions. 
(I) 
apply Waterman-Egger t  algorithm to a and b (i"v). 

~9 ~  {(Z(g, h; i,j), (g, h), (i,j)): K best} 

(II) 
set U(i, j) = V(i, j) = W(i, j) = 0 if i = 0 or j = O. 
for j = 1 to m 

for i =  1 to n 
{ U ( i , j ) = m a x ( U ( i - -  1,j)+fl2 , W(i--  1,j)+ot 2 "}- ~2} 

V ( i , j ) = m a x { V ( i , j -  1)+f12, W ( i , j -  1 ) + %  +f12} 
W(i , j )=max{mwax { W ( g -  1, h -  1 )+Z(g ,  h; i,j)} +7,  

(6) 
} W ( i - l , j - 1 ) + s i ( a  i, b~), g( i , j ) ,  V(i, j) ,  0}. 

best inversion score= m a x  { W(i, j): 1 <~ i <~ n, 1 <.j <. m}. 
We have greatly reduced computat ion time. (I) of the algorithm can be done 

in time O(nm) by (2). To execute (II) requires time proportional to nm times a 
constant plus the average number of elements in 5 a that "end" at (i, j). It might 
seem that only one best inversion has this property,  but recall that we align 
aoa o + ~ . . . a i with bib j_ 1 �9 �9 �9 bh. This allows the possibility of several elements 
with "end" (i, j). Still the list s is restricted to K elements. In the illustrative 
example discussed next 15al = 2. Clearly part  II of the algorithm best inversions 
runs in time O(nm+ s Li2). 

For maximum flexibility we have allowed s 1 (a, b) and s 2 (a, b) as well as w 1 (k) 
and w2(k ) to have different values. This might be advisable if the inversion 
segments are thought  to have evolved differently from the rest of the alignment. 
We have experimented with these parameters with the example of Section 5 
and did not  improve results over s~ = s  2 and w~ = w  2. In general, values of 
s(a, b) and w(k) = c~k +/3 are chosen in an ad hoc fashion and by experience for 
the standard alignment algorithms. More than twice as many parameters does 
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not make that task easier. We recommend setting s~ = s 2 and wa = w z . Still, 7 
and ]~] are new parameters for the inversion algorithm. We recommend choice 
of 7/> w(1) and [~P[ as large as is computationally feasible. 

To illustrate our algorithm we use the sequences a = C C A A T C T A C -  
TACTGCTTGCA and b = GCCACTCTCGCTGTACTGTG.  The matching 
functions are: 

sl(a,b)=s2(a,b)={_lllO when whenacba=b 

while: 

wl(k )=wz(k ) =  - 1 5 - 5 k .  

The inversion penalty is 7-- - 2  while the list Lf is defined by K =  2. The two 
alignments in ~ are shown in Fig. 1 a where the matched-mismatched pairs are 
boxed. The best local alignment with inversion is shown in Fig. lb. Figure 2 is a 
schematic of Fig. 1. In Fig. 2a, 1 and 2 correspond to the best and second best 
alignments, respectively. In Fig. 2b, 0 denotes alignment without inversion, 
while 1 denotes alignment of inverted regions. 

4. The J Best Alignments with Inversions. The algorithm for local alignment 
with inversions allows us to find all alignments with the optimal score. Recall 
that the Waterman and Eggert algorithm produces the K best local alignments 
with the property that none of these alignments share a pair of matched (or 
mismatched) letters. We have of course utilized that algorithm to produce list 
~ ,  I~1 = K, which reduces computing time for alignment with inversions. In 
this section we will describe a method similar to the Waterman and Eggert 
algorithm for producing the J best alignments with inversions. 

Next we review in some detail the Waterman and Eggert (1987) algorithm. In 
that paper technical details are given so that one optimal alignment is chosen at 
each stage (1, 2 , . . . ) .  Occasionally many alternate alignments have the same 
score; they often differ by small details. One guiding principle is to choose an 
alignment of shortest length. This is relevant to our algorithm for inversions 
since different alignment choices in ~ can in some cases create different overall 
alignments. 

Having chosen an alignment, the next task is to recompute the matrix H(i, j) 
so that a new matrix H* (i, j) is defined to be the matrix obtained not allowing 
any match (mismatch) from the alignments already output.  The entire matrix 
H c a n  be recomputed to obtain H* in time O(nm) but this is not necessary. The 
upper left most alignment pair (p, q) is the first value that changes: 

H*(p, q)=max{ E(p, q), F(p, q), 0}. 
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C A C A G T A C A G C G A G A G T G G C 

c Io o Io o o o o 1o o o Io o o o o o o o o lo 
c lO o lO o o o o lo o o 1o o o o o o o o o lo 
A 0 20 0 20 0 0 I0 0 20 0 0 0 i0 0 i0 0 0 0 0 0 
A 0 i0 9 I0 9 0 I0 0 i0 9 0 0 i0 0 i0 0 0 0 0 0 
T 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 I0 0 0 0 
c io o 1o o o o 8 1o o o 1o o o o o o o o o 1o 
T 0 0 0 0 0 ~ O  0 0 0 0 0 0 0 0 0 10 0 0 0 
A 0 I0 0 i0 0 7 ~  0 i0 0 0 0 I0 0 i0 0 0 0 0 0 
C I0 0 20 0 0 [] i0 5 I0 0 0 0 0 0 0 0 0 i0 
T 0 0 0 9 0 [] 0 I0 19 0 0 0 0 0 0 0 I0 0 0 0 
A 0 i0 0 i0 0 0 [] 5 20 8 0 0 I0 0 I0 0 0 0 0 0 
C i0 0 20 0 0 0 0 [] ~ 9 18 0 0 0 0 0 0 0 0 i0 
T 0 0 0 9 0 i0 0 I0 ~ 0 0 7 0 0 0 0 10 0 0 0 
G 0 0 0 0 19 0 0 5 0 ~ 9 I0 0 i0 0 i0 0 20 I0 0 
C i0 0 I0 0 0 8 0 I0 0 "-~ [] 19 14 9 4 0 0 0 9 20 
T 0 0 0 0 0 i0 0 0 0 4 19 28 8 3 0 0 I0 0 0 0 
T 0 0 0 0 0 i0 0 0 0 0 14 8 17 0 0 0 i0 0 0 0 
G 0 0 0 0 i0 0 0 0 0 I0 9 24 4 27 7 i0 0 20 I0 0 
C i0 0 I0 0 0 0 @ i0 0 0 20 4 13 7 16 0 0 0 9 20 
A 0 20 0 20 0 0 i0 0 20 0 0 9 14 2 17 5 0 0 0 0 

Inversion #i: g:10 h:10 i:15 j:15 Z:39 
TACTGC 
Ill Jl 
TACAGC 

Inversion #2: g: 7 h:13 i: 9 j:15 Z:30 
TAC 

TAC 

G C C A C T C T C G C T G T A C T G T G 

c o[] 1o o 1o o Io o lo o 1o o o o o 1o o o o o 
c o 1o~._qo 1o o 1o o 1o o Io o o o o 1o o o o o 
A 0 0 0 3~ I0 5 O 0 0 0 0 0 0 0 I0 0 0 0 0 0 
A 0 0 0 10 [] 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 
T 0 0 0 5 0 [] 9 i0 0 0 0 i0 0 i0 0 0 i0 0 i0 0 
C 0 i0 i0 0 15 9 1391 19 20 9 I0 0 0 0 0 I0 0 0 0 0 
T 0 0 0 0 0 25 19 [] 29 24 19 20 9 i0 0 0 20 0 I0 0 
A 0 0 0 I0 0 5 14 2[.~J 38 18 13 8 9 0 20 0 0 9 0 0 
C 0 i0 i0 0 20 0 15 24 "l'-g[~127 28 9 4 0 28 30 I0 5 0 0 
T 0 0 0 0 0 30 I0 25 28 16 38 18 14 81 17 40 20 15 i0 
A 0 0 0 i0 0 i0 19 14 14 I 8 17 18 27 ..7 2!I 5 20 29 9 4 
C 0 i0 I0 0 20 5 20 9 24 I 4 18 13 .7 16 34 15 9 18 0 
T 0 0 0 0 0 30 i0 30 10113 0 28 8 17 14 44 24 19 14 
G i0 0 0 0 0 i0 19 I0 19 20 .2 "'8 38 18 131 9 24 54 34 29 
C 0 20 I0 0 i0 5 20 8 20 ..~ 30 i0 18 27 761 56 51 46 43 36 
T 0 0 9 0 0 20 0 30 I0 9 i0 40 20 28 56 [] 66 46 56 36 
T 0 0 0 0 0 i0 9 I0 19 0 5 20 29 30 51 45 [751 55 56 45 
G i0 0 0 0 0 0 0 5 0 29 9 15 30 18 46 40 55 1851 65 66 
C 0 20 I0 0 i0 0 I0 0 15 9 39 19 14 19 41 56 50 65 74 54 
A 0 0 9 20 0 0 0 0 0 4 19 28 8 3 36 36 45 60 54 63 

used: Inversion #I 
i:18 j:18 W:85 
CCAATCTAC* * ** * *TTG 
Ill Ill l iiiiii I I 
CCACTCT-C* * ** * *CTG 

Figure 1. Best local alignment with inversions of a=CCAATCTAC- 
TACTGCTTGCA and b=GCCACTCTCGCTGTACTGTG. (a) Shows the 
matrix Hfor a and b (i"v~ and the two alignments in L~. (b) Shows matrix Wand the 

best alignment. 
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Figure 2. A schematic of the output presented in Fig. 1. 

H ( p -  I, q - 1) + s(%, be) is eliminated from the max imum since %/bq is in the 
alignment.  The computa t ion  proceeds along the pth row from column q to 
column r until: 

and 

H*(p, r ) = H ( p ,  r), 

e*(p, r)=E(p, r), 

F*(p, r )=  F(p, r). (7) 
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From this point on these equations must continue to hold. Then we perform 
the same operations on the qth column. We proceed by induction, switching 
from rows to columns until the effect of the alignment on H* has been 
calculated. The time to perform these operations on an alignment of length L is 
approximately proportional to L 2. 

We now turn to modifying our algorithm for inversions to yield the J best 
alignments. Our object is to produce the J best alignments that do not share a 
match, mismatch or inversion. Therefore when an inversion from 5 ~ is used in 
an alignment, it cannot be used in a succeeding alignment. This is accomplished 
by appropriately changing 5O as the algorithm proceeds. As in (7) the 
computat ion proceeds along the pth row from column q to column r until 

U*(p, r)= U(p, r) 
V*(p, r)= V(p, r) 

and 

W*(p, r )=  W(p, r). (8) 

Then the computations are performed on the qth column. In this way an 
isolated island of the matrix is recalculated. 

A second, more complicated feature of the algorithm arises at this point. The 
validity of the recalculation procedure in (8) is justified by the basic property of 
the dynamic programming recursion equations (6). However these recursions 
allow W(9 - 1, h -  1) to affect W(i, j) if (Z(9, h; i, j), (9, h), (i, j)) e 5O. Therefore 
after an island of recalculation is performed, we examine 5 ~ for (i, j) such that 
the value W*(i,j) might be changed. That is, where W*(9, h)r h). 
Finding such an entry begins a new island of recalculation. Therefore the 
procedure of recalculation can initiate a cascade of such islands. In Fig. 3 we 
give a schematic illustration with two islands. Matrix entries of * indicate that 
at least one equation in (8) does not hold. The inversion joining the islands is 
denoted by l's. If 5 ~ has a large number of entries, the likelihood of new islands 
is increased. It is therefore difficult to give a rigorous analysis of the running 
time of finding the Jbest  alignments. Ifso is short, it remains O(nm + ~/= 1 L2) �9 

2 Including the running time for computing 5O adds O(nm + ~= ~ Lj  +i). 

5. Example. We now apply the new algorithm to a biological example. In the 
work of Clary and Wolstenholme (1985) the mitochondrial genomes of 
vertebrates are compared to the mitochondrial genome of Drosophila yakuba. 
The mitochondria of vertebrates contain an inverted URF6 gene relative to the 
Drosophila mitochondrial genome. For our comparison we use mitochondrial 
DNA from D. yakuba (GenBank entry DRYMTCG,  using nucleotides 
9987-11651) and mouse (GenBank entry MUSMT,  using nucleotides 
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Figure 3. Schematic illustration of islands of recalculation. 

13 546-15282). The putative organization of genes in the sequences is as 
follows: 

Drosophila yakuba mouse 
URF6 1-525 519-1 (inverted) 
tRNA Glu 588-520 (inverted) 
cytochrome b 529-1665 594-1737. 

(Here position 1 in D. yakuba corresponds to GenBank position 9 987 and 
position 1 in mouse corresponds to GenBank position 13 546.) This is a 
difficult alignment problem, due to rapid evolution of mitochondrial genomes. 

The scoring functions are: 

and 

s~(a'b)=s2(a'b)={+~ O- acba=b 

wl(k)= w2(k)= -15-5k,  

7 = -20 .  

For ]~[ = 400, step I of the algorithm forms the list ~ of potential inversions. 
Inversion No. 26 (in order of score) is the one ultimately used in the alignment. 
We show 100 of the inversion alignment locations by straight lines in Fig. 4a. 
While alignment No. 26 is shorter than most of others, it has approximately the 
same 40% identity as the other, longer inversion alignments. The best local 
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alignment with inversions is shown schematically in Fig. 4b. Inversion No. 26 
appears as an antidiagonal straight line at the upper left corner of the square--  
the inversion is at the 5' end of our sequences. 

The alignment relates fairly well to the gene organization reported above. 
Inversion No. 26 used in the alignment aligns positions 7-480 in D. yakuba to 
positions 58-542 in mouse. This is about 45 less bases of D. yakuba and an 
additional 20 bases of mouse than indicated in the gene organization table. 

A change of the scoring functions by increasing the deletion penalties to 
w 1 (k)= wz(k ) = 20k and holding the other values fixed, changes the answer by 
eliminating the inversion from the best local alignment. This comes entirely 
from the increased cost of indels. 

We feel this example illustrates the power of the new algorithm. Even with a 
long list of candidate inversions with larger scores, our program was able to 
detect what is apparently the biologically correct inversion. With a larger 
penalty for indels, the program fails on this difficult alignment problem. 

(a) Mouso 

500 1000 1500 

g 
g 

Figure 4(a). 
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(b) Mouse 

500 1000 1500 
' , 

Figure 4. Inversion alignment algorithm applied to Drosophilia-mouse sequences. 
(a) is a schematic of the candidate inversions. (b) is a schematic of the optimal local 

alignment with inversions. 

A B C 
a - - I  D I  2 1  

A C (inv) B (inv) 

a '  - - ,  = ,, = , 

C A (inv) B (inv) 

Figure 5. An illustration of overlapping inversions. 
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6. Extensions. Our algorithm for inversions avoids the computational  
difficulties of past algorithms by omitting short inversions. In addition, to 
obtain our solution we restricted ourselves to any number of non-intersecting 
inversions. In the course of the evolution, it is likely that inversions can overlap. 
Figure 5 provides a schematic of the effect of such events. To proceed from a to 
a', the segment BC is inverted to become c(inv)B (inv). Then the a' segment A C  (inv) 

is itself inverted to become CA (inv) in b. The effect of this ( a~b)  is inversion of 
the segments A and B, and the translocation of C from 3' of B in a to 5' of A tiny) in 
b. Given our method of constructing 5r the inversion list, it is likely that even if 
A tinv) and B (inv) a re  statistically significant and can be found in ~ ,  they will not 
match exactly, at their ends. If the alignment of A with A tinV) were to extend into 
B, we might not find these adjacent inversions. While we could develop an 
algorithm to search for inversions with overlaps such as we describe in Fig. 5, 
we have not done so. Higher order intersecting events significantly complicate 
the situation, and it remains an open problem to devise practical algorithms to 
handle these cases. 
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