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Phylogenetic Reconstruction

PHYLOGENETIC TREE IS THE ONLY figure in On the Origin of Species, evidence of

the central importance of such trees to evolutionary biology. As discussed in

Chapter 5, a phylogenetic tree is a graphical representation of the evo-
lutionary relationships among entities that share a common ancestor. Those
entities can be species, genes, genomes, or any other operational taxonomic
unit (OTU). More specifically, a phylogenetic tree, with its pattern of branch-
ing, represents the descent from a common ancestor into distinct lineages. It is
critical to understand that the branching patterns and branch lengths that make
up a phylogenetic tree can rarely be observed directly, but rather they must be
inferred from other information.

The principle underlying phylogenetic inference is quite simple: Analysis of
the similarities and differences among biological entities can be used to infer
the evolutionary history of those entities. However, in practice, taking the end
points of evolution and inferring their history is not straightforward. The goal
of this chapter is to discuss both the principles and methods used in phyloge-
netic inference as well as some of the complications.

In the first section, we discuss the process of selecting and gathering ap- Thr, bksz, A3 m
propriate datasets for subsequent analysis. In the next section, we explain three - 2 o vl
widely used methods of phylogenetic inference: parsimony, distance, and like- _ s CrB. i
lihood methods. This is followed by a discussion of how these methods can be frrnf freSetsn DBy
evaluated objectively and how the reliability and accuracy of the resulting in- i ’ W e
ferences are assessed. We then raise several problematic issues that must be con-
sidered when using any phylogenetic method. Finally, we consider the fruits of V& fore R L8

phylogenetic reconstruction—how they can shed light on past evolutionary Tﬁ‘ SR, RS
events, such as gene duplications and lateral gene transfers, as well as how they :
can be used for other purposes, such as predicting gene function and resolv- (Courtesy of Cambridge University Library.)

ing RNA secondary structures.

l ESSENTIALS OF PHYLOGENETIC INFERENCE

To understand how phylogenetic inference works, it is useful to consider the com-
paratively simple case of evolution in an asexual unicellular organism. Each cell di-
vides, yielding two cells with identical genomes except for those few genomic loca-
tions where a mutation occurred. Now imagine this continuing for 20 generations,
yielding 2*° cells. Suppose that ten cells are sampled from the final population and
compared to one another. Two cells that share a recent common ancestor (i.e., that
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diverged recently) are apt to have accumulated fewer differences than a pair that di-
verged earlier, whose last common ancestor was many generations ago. Thus, theo-
retically, one should be able to infer the way in which the lineages branched leading
up to those cells over the course of the 20 generations by analyzing their similarities
and differences. In practice, however, inferring history, even in this simplified situa-
tion, is not completely straightforward, and, of course, evolution rarely follows the
simple scenario outlined above. This section discusses some of the various reasons
why phylogenetic inference is not completely straightforward.

One challenge in phylogenetic inference is that the accumulation of differences in
different lineages usually does not occur uniformly. That is, one branch may experi-
ence many changes, whereas another branch may experience none. For example, in the
cell division case given above, if by chance many more mutations occurred on one
branch than on the others during a period of time, the progeny cells on that branch
would differ more from other cells in the population than would be expected. In ad-
dition, if one sampled descendants of this branch and included them in the phyloge-
netic inference, one might mistakenly infer that they were very distantly related from
other cells. Because rates of divergence can vary a great deal in realistic evolutionary
scenarios (e.g., because of random chance or differences in mutation rates or selective
pressures), it is common for similarity alone to be a poor indicator of the degree of
relatedness. Thus, phylogenetic reconstruction methods need to account somehow for
the variation in rates of divergence between lineages.

A second major challenge in phylogenetic reconstruction is that the notion of evo-
lution as a branching process is an oversimplification and can lead to many misinter-
pretations. For example, in sexually reproducing species, recombination mixes and
matches genetic variation to produce lineages whose history is not exclusively vertical
and thus cannot be perfectly represented as a tree. The proper representation in such
cases is a pedigree. Hybridization can lead to mixing and matching even between
species, and in the case of lateral gene transfer (LGT), DNA can move across large
evolutionary distances (see pp. 182—191). Furthermore, even within a genome, evolu-
tionary processes can be quite complex with events such as duplication, deletion, do-
main shuffling, and gene conversion occurring. All of this complexity means that one
must be very careful in choosing which entities to study in a particular phylogenetic
analysis. These entities are generally referred to as operational taxonomic units, or
OTUs. The OTUs studied can be species, populations, chromosomes, individual genes,
or even regions of genes. Frequently, one type of OTU (e.g., genes) is studied in order
to find out about another (e.g., species). This must be done carefully because gene
evolution and species evolution are not the same (e.g., see p. 628).

A third major challenge that greatly complicates phylogenetic inference is the oc-
currence of convergent and parallel evolution, which lead to lineages becoming more
similar to each other over time, at least in some features. This occurrence of simi-
larities that are not due to common ancestry is known as homoplasy. This raises a
critical issue for phylogenetic analysis—only traits that are homologous and in which
the observed similarities are not due to convergence or parallel evolution should be
compared and contrasted. More specifically, homologous character traits that have
different character states in the different OTUs should be identified (see pp. 117-119
for more on traits and states). For example, in studies of vertebrate evolution, a spe-
cific bone could be considered the character trait because homologous bones can be
identified in many taxa. The form of that bone (e.g., its size, shape, or density) would
then be the character state. For molecular data, a two-tiered approach is often used
to identify homologous character traits. First, homologous elements (e.g., genes) are
identified, and the sequences of these from all the OTUs are aligned so that indi-
vidual columns in the sequence alignments correspond to putatively homologous
character traits. The end result is the generation of a data matrix with OTUs and
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TABLE 27.1. Character matrix showing character states for nine traits (A-l) in eight OTUs (1-8)

Character Traits

OTUs A B C D E F G H I
1 o 20 1 o + 2 i -
2 B 10 1 o - 2 ii -
3 B 14 1 — - 1 iii -
4 o 23 1 — - - 1 ii -
5 B 13 1 — - + 1 ii -
6 o 23 1 o - + 2 i -
7 B 14 1 B - + 2 ii -
8 o 20 1 o + + 2 i -

character traits as the headers and character states as the entries in the boxes
(Table 27.1).

These three problems (unequal rates, nonvertical evolution, and homoplasy),
as well as other challenges and complexities, have helped shape the development
of methods for phylogenetic inference as well as the collection of data for phylo-
genetic studies. It is true that each method and data type has its strengths and
weaknesses, but it should be kept in mind that despite the challenges, phylogenetic
inference is remarkably accurate, successful, and useful.

[ GENERATING A MOLECULAR SEQUENCE MATRIX

The issue of which traits to use for phylogenetic analysis has been the subject of
much discussion. For example, there has been a running debate in the field of
vertebrate evolution regarding the value of morphological character traits versus
molecular traits. Although these debates can catalyze discussion of important is-
sues, we believe that the “either/or” division that they sometimes imply is spuri-
ous. Instead, what is needed is a case-by-case evaluation using objective and rel-
evant criteria, such as cost, accuracy of character state assignment, ease of
inferring homology, lack of convergent evolution, number of possible character
states and rate of change between them, and utility of the character information
for other purposes.

For instructional purposes, the remainder of this chapter focuses on using mo-
lecular sequence data for phylogenetic reconstruction. This is not to say that such
data are better or worse per se than any other type of data. However, it is useful
to focus on sequence data here for several reasons. First, as the cost of sequencing
has dropped, sequence data have become by far the least expensive data to gather
for most studies. Second, analysis of sequence data allows one to study the molec-
ular basis of evolution. Third, the analysis is somewhat more straightforward for
molecular sequence data than for other types. The discrete and well-defined nature
of the character traits (i.e., 4 nucleotides, 20 amino acids) makes quantifying trait
evolution straightforward. Last, and most important, the principles that apply for
molecular sequence data apply to other types of data as well.

The process of carrying out sequence-based phylogenetic analysis can be di-
vided into four key steps (Fig. 27.1):

3



Part VI ¢ ONLINE CHAPTERS

Method Example
Choose gene(s) of interest 5
v 2 134
Identify homologs A E
|
v

Align sequences

l 1 2 3 4 5 6

Calculate gene tree

FIGURE 27.1. Steps in the construction of gene phylogenies. Phylogenetic analysis of genes can
be divided into a few key steps: Choose a gene of interest (shown here as gene #5), identify ho-
mologs (genes 1-4 and 6), align homologs to each other (shown by green lines), and calculate a
gene tree. (Based on Eisen J.A. Genome Research 8: 163-167, Fig. 1, © 1998 CSHLP)

1. Select a sequence of interest. This could correspond to a whole gene, a region of
a gene (coding or noncoding regions can be used), a regulatory region for a gene,
a transposable element, or even a whole genome.

2. Identify homologs. Acquire sequence data for objects that are homologous to the
sequence of interest

3. Align sequences. Align the sequence of interest and the homologous regions to
generate a sequence data matrix.

4. Calculate phylogeny. Carry out phylogenetic inference on the alignment.

In this section, we discuss the first three steps. The last step—phylogenetic infer-
ence—is discussed in the section Methods Used to Infer Phylogenetic Trees.

Select a Sequence or Sequences of Interest

When undertaking a sequence-based phylogenetic analysis, the first question to ask is,
“What sequences should be compared?” If investigators are relying on data gathered
by others, the choice may have already been made; however, in many cases, a choice
regarding what should be compared will have to be made. In principle, anything from
whole genomes to single genes can be compared. For individual genes, the whole gene,
just the coding regions, or even single introns could be compared. It is not necessary
to focus specifically on coding regions: Promoters or intergenic spacers or other
genome elements could be compared. In the end, no type of sequence is perfect for
all purposes and the decision should be based on objective criteria, much like the
choice of whether to use molecular or morphological data discussed above. A few ex-
amples of selection strategies are given here. Related issues are included throughout
this chapter in conjunction with discussions of the methods of phylogenetic recon-
struction.

One reason to select a particular type of sequence for a phylogenetic study is that
it is much easier and/or less expensive to clone and sequence for the study in ques-
tion. An excellent example of this is the use of the small subunit ribosomal RNA
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(ss-rRNA) gene for studies of microbial evolution, including both cultured organisms
(e.g., building the tree of life) and uncultured organisms (e.g., see pp. 147-151). The
main reason ss-rRNA is used for such studies is that the sequence of the molecule is
so highly conserved between species that one set of primers can be used to amplify
this gene using PCR (polymerase chain reaction) from nearly any bacteria or archaeal
species. Of course, this is not the only reason this gene is used. Another reason it is
used is that it can be used to study both ancient evolution (e.g., identifying whether
something is an archaea or bacteria) and relatively recent evolution (e.g., determining
if something is in the Escherichia or the Salmonella genus). This one gene can be used
for this wide range of evolutionary depth because different regions of the molecule
evolve at different rates.

There are, however, limitations to the utility of ss-rRNA. For example, unrelated
thermophiles tend to converge on high G + C content in their rRNA genes (see p.
155), which makes it difficult to carry out accurate phylogenetic reconstructions. Thus,
when studying organisms with very different growth temperatures, it is usually best to
analyze something other than rRNA. A second limitation of rRNA for phylogenetic
analysis is that the rates of evolution of rRNA genes appear to vary more between
species than the rates of evolution of some protein-coding genes. This has made some
studies based on rRNA analysis, such as those of microbial eukaryotes, more prone to
reconstruction artifacts such as long-branch attraction (see pp. 130-131 and 198 and
later in this chapter). For these and other reasons, researchers frequently look to other
sequence elements when rRNA rates of evolution vary greatly between the taxa being
studied.

Perhaps the most significant limitation of rRNA for phylogenetic analysis is that
even the most rapidly evolving regions generally do not evolve fast enough for this
molecule to be used to study very recent evolution (e.g., relationships among species
within genera or within species). When such recent evolutionary events are being stud-
ied, regions or genes that evolve much more rapidly are needed. One possibility is to
use protein-coding genes, because the degeneracy of the genetic code means that even
when a protein is completely conserved, the DNA sequence encoding that protein can
vary. Or, if protein-coding regions do not vary enough, introns, or pseudogenes, or in-
tergenic spacer regions can be used. However, protein-coding genes have a major ad-
vantage—even when the DNA sequence is not highly conserved, the amino acid se-
quence sometimes is, making alignments easier to create (see next section). Basically,
the investigator needs to find some type of sequence element that varies enough be-
tween the OTUs such that each OTU has a reasonable number of differences with other
OTUs but not so much that alignment is difficult.

Of course, the rate of change is not the only criterion to consider when selecting
a gene or region of a genome to study. Another criterion is whether the element is
prone to evolutionary events that may obscure or confuse the phylogenetic signal for
which one is looking. For example, if comparisons of gene sequences are being used
to study species evolution, then genes particularly prone to lateral gene transfer should
not be used because their phylogenetic history will not parallel the species phylogeny.
Genes that have undergone significant amounts of gene duplication need to be ana-
lyzed with care because orthologs (genes related to each other by speciation events, for
which the phylogeny should roughly parallel the species phylogeny) must be distin-
guished from paralogs (genes related to each other by duplication events).

By no means have all of the possible criteria that could be used in the selection of
sequences for phylogenetic analysis been discussed here. Instead, what has been illus-
trated is that one can use objective criteria to choose which genes to use for a partic-
ular phylogenetic reconstruction. Basically, the right sequences for the particular ques-
tion being asked must be found.

5
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Obtaining Sequences of Homologs—Approach 1: Sequencing

Once one or more elements have been selected for study, sequences of homologs of
this element must be obtained from the different OTUs of interest (be they species,
individuals, or whatever). There are diverse ways that sequence data can be gathered
experimentally (generally referred to as “sequencing”), and the technologies that are
used change quite frequently. Some of the general approaches to sequencing that are
of particular relevance to phylogenetic analysis are reviewed here.

The first critical aspect of sequencing is that the target for sequencing can be DNA,
RNA, or protein. That is, any of these macromolecules can be isolated from samples,
and then, using various techniques, the sequence of either nucleotides (in RNA and
DNA) or amino acids (in proteins) can be read. Currently, protein sequencing is not
used much in phylogenetic studies due to its high cost, low throughput, and relatively
low accuracy. However, this may change as “proteomic” methods improve. The rest of
this section focuses on RNA and DNA sequencing, from which the vast majority of
data for phylogenetic analysis come. For RNA sequencing, a key concern is that RNA
is much more chemically fragile than DNA. Thus, the samples for RNA sequencing
must be stored very carefully (e.g., at very low temperatures and in buffers that pre-
vent degradation) or the RNA can be converted to more stable DNA using the enzyme
reverse transcriptase (the resulting DNA being known as cDNA). DNA, on the other
hand, is reasonably stable, so that it is possible to obtain sequence information from
samples stored in museums or that are thousands of years old.

One important aspect of DNA and RNA sequencing is that it can be done in ei-
ther a targeted approach or a random approach. In the targeted approach, specific
genes or genetic elements are selected in advance (e.g., see previous section), and meth-
ods to obtain just the sequences of the homologous regions in the OTUs of interest
are used. Although the exact methods used to carry out targeted DNA and RNA se-
quencing vary, they almost always involve some form of polymerase chain reaction
(PCR). Here, PCR is used to first make extra copies of the gene or region of interest,
which then makes it easier to read the sequence of these regions, and primers for PCR
that will amplify the gene or element of interest from a new source are used. Herein
lies one of the big challenges for targeted sequencing. For phylogenetic analysis, a rea-
sonable amount of variation in sequence between the OTUs being studied is desirable.
However, for PCR to work, the reaction must be “primed” using small oligonucleotide
primers that are identical or nearly identical to regions of the gene in the OTUs of in-
terest.

The solution to this challenge is that PCR for evolutionary analysis can be used
for those genes or elements that, in all of the samples of interest, have regions that
vary in sequence and are flanked by regions that are highly conserved. Primers for PCR
can be targeted for highly conserved sites, and the variable regions can then be am-
plified and sequenced. As discussed above, this is one of the reasons that ss-rRNA has
been so frequently used as an evolutionary marker. This molecule contains both very
highly conserved regions (where the DNA sequence is nearly identical across all cel-
lular organisms such that some primers can be nearly “universal”) and moderately
variable regions that serve as the grist of the mill of phylogenetic analysis (Fig. 27.2).

PCR for evolutionary analysis is a bit more challenging for protein-coding genes,
because, as mentioned above, primer sites are required in which the DNA sequence is
highly conserved between all targets. However, in protein-coding genes, it is the amino
acid sequence of the protein that is under the most constraint, not the encoding DNA
sequence. Even if one found highly conserved regions of amino acid sequence flank-
ing highly variable regions, the primers for PCR need to target the DNA. Because the
genetic code is redundant, regions that are highly conserved at the amino acid level
may not be so conserved at the DNA level. This complication requires one to design
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hHSV1 TAC GGG GAC ACG GAC TCC ATA TTT GTG CTG TGC CGC
hvzv TAT GGA GAT ACG GAT TCT GTG TTT ATC CGA TTC AAG
eHV1 TAC GGA GAC ACC GAC TCC GTG TTT ATC AAG TTT GTG
hHV6 TAT GGT GAT ACG GAT AGC ATC TTT ATG TCT GTC AGA
hHV7 TAT GGT GAT ACT GAC AGT CTT TTT GTT ACT TTC AAA
hcMv TAC GGG GAC ACG GAC TCC ATA TTT GTG CTG TGC CGC
gpCMV TAC GGG GAC ACG GAC AGC GTC TTT GTC ATA TGC GGC
mCMV TAC GGC GAC ACC GAC AGT GTG TTT GCG GCT TTC TAC
HVS TAT GGA GAC ACA GAC TCT CTA TTT GTA GAA TGT GTT
hEBV TAC GGG GAC ACG GAC TCG CTG TTT ATC GAG TGC CGG
iHV1 TAT GGG GAT ACG GAT AGT ACG ATG CTG TAC CAC cca

5'-TAY GGN GAY CAN GAY-3’
3’-ATR CCN CTR GIN CTR-5’

FIGURE 27.2. Designing PCR primers. Alignment of a region of the DNA polymerase genes from
a sample of herpesviruses (abbreviations of the virus names given in leftmost column). The dif-
ferent amino acids present at each position in these samples (e.g., the first amino acid is Y in all
of the viruses, the seventh varies among TLIV) are shown above the top horizontal bar. The amino
acid abbreviations are as in Figure 2.23. An alignment of the DNA sequences encoding these
proteins is shown with conserved nucleotides highlighted in blue and with each codon separated.
Note that even related viruses frequently use different codons for the same amino acid. “De-
generate” PCR primers could be designed from this alignment that take into account the varia-
tion in codon usage and even the choice of amino acid. Such primers would include a mixture
of all the possible sequences. Even when a protein’s amino acid sequence is 100% conserved
between species, the degeneracy of the genetic code usually prevents the use of nondegenerate
primers. This is an important consideration because PCR works better with less degenerate
primers. (Modified from Rose T.M. Nucleic Acids Res. 26: 1628-1635, Fig. 2, © 1998 Oxford
University Press.)

“degenerate” PCR primers where all possible DNA bases are included to cover all pos-
sible ways that particular amino acid sequences could be encoded. Such degenerate
primers work best when the degree of degeneracy is lowest. Thus, for PCR amplifica-
tion of protein-coding genes, one searches for regions that are not only highly con-
served at the amino acid level, but for which the conserved amino acids have low de-
generacy (e.g., methionine is good because it can only be encoded by one codon,
whereas leucine is less good because it can be encoded by six codons) (Fig. 27.2).
An alternative to the targeted sequencing of selected regions of particular genomes
is to use a random approach. Here, the pitfalls of PCR and other targeted approaches
are avoided, and random cDNA or genomic DNA regions are sequenced. This ap-
proach is, of course, the basis for genome sequencing methods and can be very pow-
erful, in part because it provides large datasets but also because it can be automated,
making the cost per base pair of information obtained very low. Once large amounts
of sequence information are obtained using a random approach, genes or elements of
interest can be identified in the data using computational database search methods

(described below).
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TABLE 27.2. Examples of large public DNA sequence databases

Database Name

GenBank

Managed by Web Site

National Center for Biotechnology http://www.ncbi.nlm.nih.gov/Genbank/index.html
Information, USA

EMBL Nucleotide Sequence database ~ EMBL European Bioinformatics Institute  http://www.ebi.ac.uk/embl/

DDBJ (DNA Data Bank of Japan)

National Institute of Genetics, Japan http://www.ddbj.nig.ac.jp/

Obtaining Sequences of Homologs—Approach 2: Database Searching

Fortunately, the actual sequencing does not need to be done to obtain sequences of
interest. Today, these can be obtained by searching sequence databases. Major online
databases store both published and unpublished sequence information (examples are
GenBank, the EMBL Nucleotide Sequence database, and the DNA Data Bank of Japan
[DDB]J]; see Table 27.2). In addition, thousands of smaller online databases focus on
particular organisms, particular types of data, or data produced at particular institu-
tions. Custom databases can also be made for searching that include information in
public databases as well as private information (the results of a researcher’s own se-
quencing efforts), such as the random sequencing discussed above. Any of these data-
bases can then be searched for sequences of interest.

Diverse methods are available for searching for homologs of a sequence of inter-
est in sequence databases. In essence, all of these methods carry out some type of se-
quence alignment where a query is scanned against the database in a search for se-
quences in the database that are similar to the query. The methods that are used vary
both in what they use as a query and in how they identify and score similarity to the
database. As basically the same methods are used to carry out multiple sequence align-
ments, we discuss them in the following section. For our purposes here, what is most
important is that all database search methods use the same general principle. Matches
are given a score depending on the type of match with the database, and the database
searching tools then produce a table of scores or probabilities for each item in the data-
base compared to the query. A cutoff is used to throw away weak matches, and the top
matches are stored. We note that there are many ways to assign scores to matches, some
of which are discussed in the next section. Finally, a decision must be made among
the resulting matches as to which are truly homologs of interest and which are not.

This last step is critical and the source of many problems: Similarity of sequence
is not proof of homology. For example, when searching large sequence databases, in-
vestigators would expect to find short regions of similarity to their query sequence by
chance. The larger the database, the more likely such spurious matches will occur. Even
when apparently nonrandom similarities are found, the similar sequences are not nec-
essarily homologs. Sequence similarity could be a reflection of homology, but it also
could be the result of convergent or parallel evolution (also know as analogy).

How is sequence similarity due to homology distinguished from that due to anal-
ogy? One common approach is simply to set a conservative similarity threshold and to
conclude that sequences are homologous only if they have very high levels of similar-
ity. Another approach is to take each of the sequences in question and attempt to infer
what its recent ancestors were like. This would be akin to studies of bird and bat wings,
which we know are similar as a result of convergence because the relatively recent an-
cestors of bats did not have wings (Fig. 27.3). Most importantly, one must understand
that homology is an inference and does not follow directly from measures of similarity.
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FIGURE 27.3. Testing for convergence.
(A) Pattern of the presence and absence
of a feature across ten species. (B) The
phylogeny of the ten species. (C) Pres-
ence and absence of the feature over-
laid onto the tree with likely ancestral
character states inferred. The arrows
show the branches where the trait is in-
ferred to have originated separately by
convergence.

Multiple Sequence Alignment Is a Critical Step in Phylogenetic
Reconstruction from Gene Sequences

In theory, each homologous sequence could be treated as a single character trait with
an enormous number of states for phylogenetic reconstruction. However, the great ad-
vantage of sequences for phylogenetic inference is that, in principle, each position in
the sequence can be considered a separate character trait. For this to work, there needs
to be a way of comparing individual homologous positions found in different homolo-
gous sequences. This is done by making sequence alignments, where, in essence, each
sequence is assigned to a separate row in a matrix, and homologous positions in dif-
ferent sequences are lined up in columns. Such an alignment serves as the data ma-
trix for phylogenetic analysis introduced earlier with the sequences in rows corre-
sponding to OTUs, the columns corresponding to homologous traits, and the specific
residue (amino acid or nucleotide base) in each sequence being the character states. It
is critical to realize that the residues in one column are considered to be different states
of a homologous trait. In other words, it is inferred that the residues in one column
have been derived by mutation of common residue in some ancestral sequence. This
is known as positional homology.

If sequences simply evolved by changing the nucleotide found at one position to an-
other nucleotide, alignments would not be particularly challenging—all one would need
to do is find the starting point for each homologous set of elements, and the rest of the
residues would then simply line up downstream from the start. However, evolution is
much more complex. Perhaps the most important complexity for the purpose of align-

9
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ments is the occurrence of insertions and deletions. Such insertion/deletion changes can
be small (e.g., involving a single position) or large (e.g., inserting a new domain in the
middle of a protein). When these occur in one or more lineages in the history of the
evolution of a particular element, the homologous residues in different sequences will
be out of register with each other. That is, position 10 in one sequence may line up with
position 45 in a homologous sequence. Thus, to make an alignment for which the po-
sitional homology still holds in alignment columns, gaps must be inserted into the align-
ment. If a residue were deleted in one element relative to all others, then a gap would
need to be inserted in the element that included the deletion to line it up with the oth-
ers. If a residue were inserted in one element, a gap would need to be inserted in all of
the others to have them line up with the element with the insertion.

Figure 27.4 shows an example of how adding gaps can improve an alignment. Fig-
ure 27.4A is an alignment of hypothetical homologous genes without gaps. Note how
the bases in the columns are not highly conserved. The addition of gaps in Figure
27.4B changes this, with each column containing only a single base. If the complete
history of all insertions and deletions were known, the gaps in the alignments could
be placed easily to make all of the homologous residues line up correctly. Of course,
this information is not available in most cases, so the locations of the gaps must be
inferred. Alignment algorithms are designed to slide sequences against each other in
various ways to identify where and how large the gaps should be, a process that must
be optimized for all of the sequences in an alignment, not just each pair.

Insertions and deletions are not the only complexity of sequence evolution that
alignment methods need to deal with. For example, sections of an element can be
moved from one end of an element to the other via some type of translocation. Sec-
tions from one element may move into the middle of another element. Inversions can
make optimal alignments nonlinear. In part because of these complexities, there is an
almost bewildering diversity of methods available for carrying out sequence alignments
for phylogenetic analysis. Some of the different classes of approaches are reviewed here,
including those that focus only on primary sequence and those that attempt to use sec-
ondary or tertiary structure information as a guide. Note that these same approaches
are used in performing database searches as discussed in the previous section.

A Alignment Position
1 2 3 4 5 6 7 8 9

A A A C T A T G G C
B A C T A T © @ C A

. C A T A C T A T G G

20 D A T A C T A T G G

(@ E A A T G G C A C A
F A A C T T T G G C
G A C T A T G G C A
H A A C T A T G G C

B Alignment Position
1 2 3 4 5 6 7 8 9 10 11 12 13

A A - A C T A T G G C - - -
B A = = C T A T G G C A -

wnl C A T A C T A T G G - -

2 D A T A | C T Al T G | G - - - -

(@] E A = - - — A T G G C A A
F A = A C T T T G G C - - -
G A - - C T A T G G C A
H A = A C T A T G G C - - -

FIGURE 27.4. (A) Alignment showing character states for nine alignment positions in eight genes
(A-H). (B) Alignment with gaps illustrating how the alignment in A could be improved by allow-

ing gaps.
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Alignment by Primary Sequence—Approach I: Comparing Sequences
without External Information

The most commonly used approach to multiple sequence alignment is to make use
only of the primary sequence information in the elements being aligned. In such meth-
ods, it is common to use what is known as a progressive approach, wherein a pair of
sequences is first aligned to each other (with gaps inserted where necessary in the two
sequences) and this alignment is then “locked.” Next, either another sequence is aligned
to this locked pair or a new pair of sequences is aligned to each other (again with gaps
inserted where necessary). This procedure continues until all of the homologous se-
quences have been aligned. Because the order in which the sequences are aligned can
significantly affect the results, a variety of methods for determining this order have
been developed, with most using some scoring scheme to identify and then align the
most similar sequences first and then the next most similar pair, and so on.

The actual step of aligning two sequences or sets of sequences to each other and
placing gaps where needed can be done in a variety of ways. The methods to do this
generally can be divided into two classes: global and local. Global alignment methods
attempt to optimize the alignment over the entire length of each sequence or set of se-
quences. Local alignment methods search for smaller sections of similarity that do not
necessarily encompass the entire length of the sequences and then link together multi-
ple small local alignments into a larger alignment. One local alignment method, Basic
Local Alignment Search Tool (BLAST), is commonly used in database searches and is
described in more detail in Box 27.1. In both local and global alignments, it is neces-
sary to assign scores to the “match” between two sequences to identify the optimal align-
ments. These scores are assigned using matrices similar to those described in Box 27.1.

oY@ VAN BLAST Searching

The most commonly used method of database searching is to Match 1
start with a sequence of interest (known as the query se-
quence) and search in the database for similar sequences. It Query ARTTARTTAACC
S . . ; : Database AATTAATTAACC
is important to realize how massive a computa.tl(?nal task this Score 111111111111 = Total 12
is as current sequence databases include millions of pro-
teins, thousands of complex genomes, and many additional
sequences. Such searches are frequently carried out using Match 2
the algorithm knowp as BLAST (Ba_sic I._ocal Alignment Qe AATTAATTAACC
Search Tool). We outline the key steps in this method below. Database AACCAATTAACE
Score 110011111111 = Total 10

Step 1. Breaking Sequences into Words and Searching for
Word Matches: In the first step, BLAST chops both the
query sequence and the database sequences into short se-
quence segments known as “words.” The length of words
that are used can be varied. For each word in the query, a
list of similar words is made in the following way. First, the
word is aligned to other possibly similar words. Then, the
residues in each position of the alignment are compared
and a score is given based on a substitution matrix that is a
table of scores for all possible pairs of residues. Next, the
score is summed across the entire word alignment, and if
the score exceeds some threshold, the word is considered to
be similar to the word in the query (Fig. 27.5).

For DNA word comparisons, a simple matrix is usually
used with a +1 score given when the two words have the
same nucleotide and a 0 score given when two words have a

FIGURE 27.5. Alignment and scoring as in BLAST.

different nucleotide (Table 27.3). The comparison of protein
words is essentially the same as for DNA. However, the scor-
ing matrices for amino acid sequences in proteins are more
complex because they are 20 x 20 matrices (Fig. 27.6). Fur-
thermore, the scores can be generated in two ways. One
method, based on the score on the chemical similarity of var-
ious amino acids, assigns positive scores to similar amino
acids and negative scores to dissimilar amino acids—a
method that penalizes positions where the query and data-
base sequences are chemically different. An alternative
method, based on comparisons of known protein sequences,
acknowledges the differing probabilities of different amino

11



Box 27.1 Continued.

TABLE 27.3. DNA substitution matrix and
some word matches

Query Database Sequence
Sequence A C G T
A 1 0 0 0
C 0 1 0 0
G 0 0 1 0
T 0 0 0 1

acid substitutions over evolutionary time. This method assigns
a positive score to the common substitutions and a negative
score to the rare substitutions. An example of such a matrix is
shown in Figure 27.6. The values range from negative to posi-
tive and, as with the DNA-based scoring outlined above, a
higher score implies a better match. Thus, with either method,
similarity of protein sequences is based not only on the total
number of differences between them, but also on how likely
it is that the substitutions would affect protein function.
Using the scoring methods outlined above, a list of sim-
ilar words is made for all words in the query sequence. The
database is then scanned for the presence of any of these
words, which can be done very quickly and efficiently. A key
aspect of the algorithm is that the word length, the substitu-
tion matrix, and the score cutoff threshold for word similar-
ity can all be varied to generate different lists of similar
words to search for in the database. This splitting of query se-
quences into words and searching just for the presence of
similar words in the database allow the BLAST algorithm to
carry out comparisons between DNA and protein sequences
and vice versa. For example, if one had a protein sequence
and wanted to know if there was a sequence in a DNA data-
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base that could encode a similar protein sequence, the
tblastn version of BLAST would be used. This program takes
the DNA database and translates it in all six reading frames
and creates a peptide database. Then, it takes the protein se-
quence, breaks it up into amino acid words, and searches for
similar words in the translated database.

Step 2. Word Alignment Extension: When similar words are
found, the algorithm tries to extend the length of the match
between the query sequence and the database sequence by
generating a longer alignment between them. This alignment
will be extended as long as the matching score stays above a
user-specified threshold. Extension scoring is usually done
with the same type of matrices as were used for the original
word matching. However, sometimes gaps are allowed and
these also need to be given a score. This alignment extension
is repeated for all the word matches and the extended align-
ments are then ranked. Several ranking methods are avail-
able. For example, they can be ordered by the total alignment
score or they can be given a significance value (given as an E
value that represents the expected chance that one would see
such a match in a random database of the same size).

Step 3. Setting Cutoff Thresholds: The BLAST algorithm
can output alignments between the query sequence and
sequences in the searched database and can assign them
scores. However, it cannot identify which alignments are
relevant to the question at hand. How is that determined?
The method, of course, depends on the particular question
being asked. If the study is focused on closely related
homologous sequences, a stringent cutoff can be set for
either the E value or the total alignment score. If more
distantly related sequences are included in the analysis,
then a less-stringent cutoff should be used. As discussed
above, it is critical to remember that similarity is not proof
of homology.
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FIGURE 27.6. Amino acid scoring matrix. The matrix called BLOSUM®62 is shown here. (Redrawn from Henikoff S. and Henikoff

J.G. 1992. Proc. Natl. Acad. Sci. 89: 10915-10919, Fig. 2.)
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Alignment by Primary Sequence—Approach Il: Using Prior
Alignments as a Guide

Often, a gene family or sequence element of interest has been studied previously, and
thus prior information is available that could aid in making alignments with new fam-
ily members. One way to use this prior information is to use a prior alignment as a
“seed” for aligning new sequences. An alternative approach is to use the prior align-
ment to make a model of the sequence patterns seen in the family and then align new
sequences to this model. This method could be used both for generating a new mul-
tiple sequence alignment and for searching a database for new members of the gene
family of interest.

A variety of methods are available for creating such models of gene families or se-
quence elements. One approach is to take a prior alignment and determine the most
frequent nucleotide or amino acid in each column and then use these to create a con-
sensus sequence for the family. New sequences can then be rapidly aligned to that con-
sensus sequence using BLAST, for example. A more refined variation uses all of the
information in the prior alignment to create a model of the probabilities for each nu-
cleotide or amino acid for each column. New sequences are then aligned to the model
and a probability that the sequence matches the model can be calculated. One exam-
ple of this probability-based alignment is the use of protein family hidden Markov
models (HMMs) (Fig. 27.7).

Structure-guided Alignments Are Sometimes Needed

In some cases, the primary sequence of genes or elements of interest is so poorly con-
served that it cannot be used to make alignments. In these cases, it is sometimes pos-
sible to make robust alignments by using structural information as a guide. For ex-
ample, secondary structure is highly conserved for rRNA genes, even when the primary
sequence is not. Thus, alignment of the primary sequence can be guided by the cor-
responding position within the secondary structure (Fig. 27.8). Similarly, alignment of
distantly related protein sequences can be guided by the protein’s known or predicted
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FIGURE 27.7. A simple hidden Markov model for a sequence alignment. (Left) An alignment is
shown for five related peptides, each with three amino acids. These three columns are used to cre-
ate a model of the sequence patterns of this peptide group. (Right) Hidden Markov model for these
five peptides. The columns are modeled by the match states (boxes labeled m1, m2, and m3), each
of which has 20 possible residues with the probability for each determined from the alignment
column. One can also model the probability of insertions and deletions relative to the model (dele-
tion possibilities are shown in the circles d1, d2, and d3). (b and e circles) Beginning and ending
probabilities. The arrows represent transition probabilities between states. (Modified from Eddy S.R.
Bioinfo. Rev. 14: 755-763, Fig. 2, © 1998 Oxford University Press.)
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FIGURE 27.8. rRNA structural alignment. (A) Secondary structure of a portion of the 12S rRNA
from the louse Ancistrona vagelli. Numbers correspond to specific stems and loops. (B) Alignment
of 12S rRNA sequences from animals using secondary structure as a guide. The alignment shows
domain Il of animal 12S rRNA. The approximate locations of stems and loops (using numbers as
in A) in the secondary structure are indicated. Stems are labeled above the alignment. Conserved
motifs are indicated below the alignment. (r) Purine; (y) pyrimidine; (uppercase characters) highly
conserved nucleotides. (A, Redrawn from http://taxonomy.zoology.gla.ac.uk/~rdmp1c/lice/12S/
structures.html. (B, Redrawn from Hickson R.E. et al. Mol. Biol. Evol. 17: 530-539, Fig. 1, © 2000
Oxford University Press.)
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secondary or tertiary structure. In such cases, a modeling program is often used to test
the fit of a particular sequence against a known two- or three-dimensional structure—
a process known as threading. When completed, the positions in two- or three-di-
mensional space can be used to back-calculate a primary sequence alignment.

An Alighment Represents a Hypothesis

However one generates an alignment, whether it is a multiple sequence alignment or
a pairwise alignment between a query and a database, it is critical to realize that align-
ments represent a hypothesis and not truths per se. Thus, the residues in an alignment
column in a multiple sequence alignment, even if they are similar to each other, may
not have all been derived from a common ancestor. For example, convergent evolu-
tion can cause unrelated sequences to be highly similar. Although the occurrence of
convergent evolution is generally accepted at the level of morphology, it is frequently
ignored at the molecular level even though its occurrence at this level is well estab-
lished. For example, just because two proteins have similar three-dimensional struc-
tures does not mean they are actually homologous.

Alignment Complexity and Accuracy Depend
on the Region(s) Being Compared

It is critical to realize that the ease with which alignments can be generated varies de-
pending on the evolutionary distance of the elements being compared as well as the
patterns of sequence evolution of those elements. For example, when comparing ho-
mologous protein-coding sequences from very closely related species, for most such
genes, it may be possible to align the DNA sequences themselves without much trou-
ble. However, it may be more challenging to align some protein-coding genes in those
same closely related species, if those genes have undergone such strong positive selec-
tion that their sequences only barely resemble each other. When more distantly related
protein-coding genes are being compared, alignments can become much more chal-
lenging. A key problem is the occurrence of insertions and deletions mentioned above.
The more insertions and deletions that have occurred, the more difficult it will be to
identify homologous positions within genes.

In most of the discussion in this chapter, we have focused on alignments of pro-
tein-coding genes. However, there is also great interest in aligning and comparing non-
coding regions (e.g., regulatory elements) within and between species. In many cases,
aligning homologous noncoding regions is quite challenging because the patterns of
conservation are very different from those seen for gene sequences (e.g., see pp.
545-547). This means that algorithms for alignment that have been designed to work
well for gene sequences may not work well for many noncoding regions.

I METHODS USED TO INFER PHYLOGENETIC TREES

Once a multiple sequence alignment is in hand, a phylogenetic reconstruction method
(or methods) must be chosen. The many and remarkably diverse methods can be clas-
sified into four main categories on the basis of their overall schema: parsimony, dis-
tance, likelihood, and Bayesian methods (Table 27.4). The following sections provide
a general outline of these approaches along with a few examples of methodological
variants within each category.
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TABLE 27.4. Molecular phylogenetic methods

Method Description

Parsimony Possible trees are compared and each is given a score that is a reflection
of the minimum number of character state changes (e.g., amino acid
substitutions) that would be required over evolutionary time to fit the se-
quences into that tree. The optimal tree is considered to be the one re-

quiring the fewest changes (the most parsimonious tree).

Distance The optimal tree is generated by first calculating the estimated evolu-
tionary distance between all pairs of sequences. These distances are
then used to generate a tree in which the branch patterns and lengths

best represent the distance matrix.

Maximum likelihood ~ This method is similar to parsimony methods in that possible trees are
compared and given a score. The score is based on how likely the given
sequences are to have evolved in a particular tree given a model of
amino acid or nucleotide substitution probabilities. The optimal tree is
considered to be the one that has the highest probability of producing

the observed data.

Related to maximum likelihood methods, but attempts to infer the prob-
ability of trees themselves and not just the probability that a tree could
produce the observed data. Current implementations of these methods
search for distributions of trees with high probability by first starting with
some assumptions about “prior” distributions of possible trees.

Bayesian

Based on Eisen J.A. 1998. Genome Res. 8:163-167, Table 3, © 1998 CSHLP.

Parsimony Methods Are Based on the Principle of Occam’s Razor

The principle known as Occam’s (or Ockham’s) razor states that, other things being
equal, the simplest explanation—the most parsimonious one—should be chosen. Ap-
plication of this principle to evolutionary studies has led to the development and use
of “parsimony” methods for phylogenetic inference. These methods work in the fol-
lowing manner: Given a set of data (e.g., a multiple sequence alignment), phylogenetic
trees that represent alternative possible relationships among the OTUs in the dataset
are given a score. The score is a measure of the number of evolutionary changes (e.g.,
A changing to T) that would be required to generate the data given that particular
tree. Of the possible trees, the one considered most likely to represent the true history
of the OTUs is the one with the lowest score (i.e., the one requiring the fewest evolu-
tionary changes). This is also known as the “most parsimonious tree.”

As an example, imagine that we have DNA sequences from five taxa (Fig. 27.9). In
a parsimony analysis, our goal would be to generate all of the possible trees showing
the relationships among the five taxa and then to determine the number of evolu-
tionary changes that would be required to generate the sequence alignment given each
of those trees. To make this very simple, just consider one alignment column (column
1) and two possible trees (Fig. 27.10A,B). For each of these trees, we need to deter-
mine how many evolutionary changes would have been required to produce the ob-
served character states in column 1 (i.e., to fit the sequence data to the tree). This is
done by overlaying the character states onto the tree and then working backward to
infer the ancestral states. For example, for tree 1, first overlay the current states (Fig.
27.10C) and then ask: What is the simplest way to get these data? The simplest his-
tory of possible ancestral states requires only one change from A—G along one branch
(Fig. 27.10E). It is important to realize that there are other ways to generate the data
given this tree, but what we need to determine is the scenario requiring the fewest

OTUs

Uk wN R

Position in

multiple sequence

alignment
1234567809101112
GCAAAAAAACTT
GCAAAAAAACCT
GCAAAAAAAAAC
ACAGGAGGAAAA
AACAAGAACAAA

FIGURE 27.9. A hypothetical se-
quence alignment.
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Tree 1 Tree 2
A 1 B 1
2 5
3 3
4 4
5 2
C G 1 D G 1
G 2 A5
G 3 G 3
A 4 A 4 FIGURE 27.10. Parsimony analysis. Two
possible trees relating the sequences from
A 5 G 2 Fig. 27.9 are compared. (Left column) Pos-

sible tree #1; (right column) possible tree
1 #2. (A,B) Two possible trees. (C,D) Charac-
ter states from alignment column #1 are
overlaid onto the trees. (E,F) Possible an-

5 cestral character state reconstructions are
shown for each tree. Character states are in-
3 dicated on the tree for ancestral nodes.
State changes are indicated by arrows. For
4 tree #1, one reconstruction (Ea) requires

only one character state change, whereas
2 the other (Eb) requires two. Thus for this tree
we would infer that only one character state
1 change is required to fit the data in align-
ment column 1 to the tree. For tree #2, on
reconstruction requires two state changes

5 (Fa), whereas the other requires three (Fb).
Thus for this tree we would infer that two
3 character state changes are required to fit
the data in alignment column 1 to the tree.
4 Since tree #1 only requires a single state
change, this tree would be favored as more
2 parsimonious over tree #2.

changes. For the alternative tree, the same exercise is performed. Again, overlay the
characters onto the tree (Fig. 27.10D). Here, a minimum of two changes are required.
One example is shown below, although there are other possible histories requiring only
two changes (Fig. 27.10F). This methodology is repeated for all alignment columns to
give each tree a score that represents the sum, over all alignment columns, of the min-
imum number of evolutionary events required to produce that tree.

The example above shows a very simple case in which the minimum number of
changes required to generate particular trees can be counted. Of course, in the world
of real data, further complications arise—there can be many more taxa involved and
more characters. As a result, determining the minimum number of changes is not
straightforward, but rather requires the use of complex computational algorithms.
Even assuming that the minimum number of evolutionary changes required to fit a
set of sequences to a given tree can be identified, one major complication to parsi-
mony analysis remains: As the number of taxa goes up, the number of possible trees
increases exponentially (Table 27.5). Thus, in many situations, a score cannot be given
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TABLE 27.5. Number of possible branching patterns versus number of OTUs

OTU Rooted Trees® Unrooted Trees”
3 3 1
4 15 3
5 105 15
6 945 105
7 10,395 945
8 135,135 10,395
9 2,027,025 135,135
10 34,459,425 2,027,025

AN, =2n-3)x2n -5 XQ2n—-7)x - x3x1=2n-3)/[2"" 2 x (n-2)!].
PNy = (2n—5)x 2n—7) X =~ x 3 x 1 = 2n - 52"~ 3 x (n - 3.

to all possible trees because there are simply too many to calculate. To overcome this
computational obstacle, methods have been designed to search through this “tree
space” to find the shortest tree without actually scoring all possible trees (see Box 27.2).

What we have described here is parsimony-based phylogenetic reconstruction in
its simplest form. There are many variants to this, such as the use of different weight-
ing schemes for different types of changes. All follow the same general principle of
searching for the lowest-scoring tree or trees. An important aspect of such methods is
to recognize that they explicitly involve inferring ancestral and derived character states,
which can be of great use in studying the pattern of trait evolution.

Y @VMWA Tree Searching

Many phylogenetic methods (e.g., parsimony, likelihood,
and some distance methods) identify optimal trees by as-
signing scores to all possible trees and then picking the
“winner.” This approach has one major limitation: For many
datasets, there are more possible trees than one can score.
This has led to the development of algorithms that scan
through the set of all possible trees for a given dataset (i.e.,
the tree space) and locate the tree with the best score with-
out actually scoring all the possibilities.

Searching through tree space is similar in concept to the
idea of searching through fitness landscapes described on
pp. 464-466 and 472-473. Basically, the task for a com-
puter algorithm here is to find the highest peaks on the land-
scape of tree scores and not get trapped in local optima
when higher peaks are found elsewhere. To understand how
this is done for tree searching, we give an example here for
a parsimony-based scoring scheme. Note that the score
could be based on other measures, such as distance or like-
lihood calculations.

Suppose the dataset is composed of a particular gene
sequence from each of five species. Construct the first tree,

at random, to represent one possibility for the phylogenetic
relationships among the five species. Use a parsimony
method to assign the tree a score that represents the number
of DNA substitutions that would have been required to pro-
duce the gene sequences as located in this tree. Then, re-
arrange the tree by moving some nodes/branches and score
the resultant tree. Compare the two trees and choose the
one that requires the lower number of substitutions (i.e., the
more parsimonious tree). Repeat this process again and
again, each time performing a branch/node rearrangement,
scoring the new tree, and selecting the “shorter” one.
Various methods have been developed for rearranging
the nodes/branches. One, known as nearest-neighbor in-
terchange, swaps two of the nearest neighbors within the
tree (Fig. 27.11). In theory, one could identify the optimum
tree by continuing to swap pairs of nearest neighbors until
no shorter trees can be identified. However, this type of tree
search can get stuck on a local optimum, or peak, because
the method does not allow for major tree changes. For ex-
ample, if a person is on the peak of a small mountain in
England, all “nearest neighbors” would be downhill, and
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Box 27.2 Continued

Original tree Exchange 1 and 3 Exchange 2 and 3

one would stop searching, thinking that the optimum had
been found, without ever discovering the global optimum
far away in the Himalayas. Therefore, this method needs to
be complemented by others that allow searching for far-
away optima, such as subtree pruning and regrafting (Fig.
27.12). In such methods, a branch along with all of its sub-
branches is moved from one location on a tree to another
spot on the same tree, thus enlarging the searched space.
The scores are then compared between the two trees and
the tree with the better score is selected as the next starting
point.

These are but two examples of the many different tree-
searching methods. The basic idea shared by most ap-
proaches is to combine multiple methods so that one not
only can climb to the top of a local peak but can also locate
other peaks in the distance that might be higher still.

FIGURE 27.12. Subtree pruning and regrafting. In this alter-
nating tree-generating method, a subtree on a larger tree is se-
lected, such as the circled subtree in A. This subtree is then
removed (“pruned”) from the tree (B) and reattached (“re-
grafted”) at a different position (labeled by arrows in C). For
tree searching, the process is repeated for all possible regraft-
ing locations (arrows) and the tree with the best score is se-
lected for further analysis. (Redrawn from http://www.scs.fsu.
edu/~ronquist/compgen/LectPhylol.pdf.)

FIGURE 27.11. Nearest-neighbor interchange is
a method of generating alternative trees in
which an internal branch in a tree is selected
and then the subtrees that are connected to that
branch are exchanged. When used for tree
searching, such as in parsimony methods, each
tree would be assigned a score and the tree with
the better score would serve as the starting point
for further analysis. (Redrawn from http://www.
hyphy.org/docs/analyses/methods/nni.html.)
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A
1
1
1 B
2
1 C
2
D
1
— 5 FIGURE 27.13. Tree for UPGMA. This is the
E “true” tree showing the relationships among
six OTUs. Branch lengths are drawn on the
4 tree. (Redrawn from http://www.icp.ucl.ac.

F be/~opperd/private/upgma.html.)

Distance Methods Use the Evolutionary Distance
between OTUs to Infer Phylogenetic History

Organisms sharing a recent common ancestor should, on average, be more similar to
each other than organisms whose last common ancestor was more ancient. Therefore,
it should be possible to infer evolutionary relationships from the patterns of similar-
ity among organisms. This is the principle that underlies the various distance meth-
ods of phylogenetic reconstruction, all of which follow the same general outline. First,
a distance matrix (i.e., a table of “evolutionary distances” between each pair of taxa)
is generated. In the simplest case, the distances represent the dissimilarity between each
pair of taxa. The resultant matrix is then used to generate a phylogenetic tree.

To explain how distance methods work, assume initially that the real history of the
taxa is known and that their relationships can represented in the form of a tree where
the branch lengths represent the evolutionary distances between nodes (see, e.g., Fig.
27.13). (Later, we return to how distances are calculated from data such as those from a
multiple sequence alignment.) Given such a tree, we can calculate the distances between
all of the OTUs (the values needed for a distance matrix) by simply summing the lengths
of the branches that connect them and thus generate a distance matrix (Table 27.6).

Working in the opposite direction, starting with the distance matrix, how can the
tree be inferred? One approach would be to mimic the parsimony methods outlined
above, compare different trees to each other, and give each a score based on some
analysis of the distance matrix in comparison to the tree. One such method, known
as the least-squares method, gives each tree a score in the following way. For each tree,
branch lengths are calculated by attempting to minimize the least-squares difference
(LSD) between the distance matrix and the branches. The LSD is the sum of all squares

TABLE 27.6. Distance matrix

OTUs A B C D E F

mm g N w >

x© o o~ N O
x© o o~ O N
x© o o O H~ »
x© A~ O O O O
©® O ~ 0o O O
S o © & & o©

21



22

Part VI ¢ ONLINE CHAPTERS

of all (D,, — D), where D,,, is the distance in the matrix and D is the distance in the
tree. Then, using tree-searching algorithms akin to those in Box 27.2, the tree with the
lowest LSD can be found. An alternative method, known as minimum evolution, uses
the LSD calculation to assign branch lengths to each tree, but then searches for the
tree that has the shortest total sum of all the branch lengths.

Although it has been shown that searching for the optimal distance tree using these
methods can be powerful, such searches have many of the same limitations as parsi-
mony methods (e.g., low efficiency due to the need to scan through tree space). For-
tunately, another alternative method calculates a tree directly from a distance matrix
using an algorithm. Such algorithmic approaches are remarkably fast because they do
not require one to scan through tree space. Two examples of distance-based algorithms,
the unweighted pair group method with arithmetic mean (UPGMA) and neighbor
joining, are described in Box 27.3.

Ho@y#ll UPGMA and Neighbor-Joining Methods

UPGMA: One algorithm for inferring a tree from a distance
matrix is a progressive clustering method (much like those
used for sequence alignment described above) known as
the unweighted pair group method with arithmetic mean
(UPGMA) algorithm. This method constructs a tree by
identifying the shortest distance (D) in the matrix, clustering
those two taxa into a single OTU for use in all subsequent
calculations, calculating a new distance matrix, and then
repeating these steps. The following example illustrates in
more detail how UPGMA works.

Suppose that six OTUs (species in this example) are re-
lated by the tree in Figure 27.13. The numbers on the tree
correspond to the evolutionary distances separating each
species. A distance matrix for these species can be deter-
mined by simply summing up the numbers on the branches
connecting each pair of OTUs (Table 27.6). Note that the
matrix is symmetrical about a diagonal axis because the dis-
tance from, for example, A to B is the same as the distance
from B to A. Thus, such matrices are frequently simplified to
show only the values on one side of the diagonal (Table
27.7). The UPGMA algorithm converts this distance matrix
data into a tree in a series of steps:

1. The pair of OTUs with the shortest pairwise distance is
selected (i.e., A and B in this example). A subtree is then
drawn for A and B with the branch length between them
equal to 2 (Fig. 27.14).

TABLE 27.7. Diagonal matrix—Step 1

OTUs A B C D E
B 2
C 4 4
D 6 6
E 6 6 4
F 8 8 8 8 8

A B

FIGURE 27.14. Subtree for A and B with branch length equal
to 2.

2. This subtree is refined by positioning A and B as the tips
and placing the node between them at the midpoint
(e.g., 0.5 x 2 = 1) (Fig. 27.15). Note that by placing the
node at the midpoint between the two groups, the UP-
GMA method implicitly assumes that the rate of change
has been the same in each lineage since they diverged
from a common ancestor. This assumption is invalid in
many, if not most, cases and is one of the biggest limita-
tions of the UPGMA method (discussed further below).

3. These two OTUs are merged and treated as one (AB). A
new distance matrix is generated where the distance
between each OTU and AB (Dj s ) is calculated as the
average of the original distance from that OTU to A
(Dx ) and its original distance to B (D, p):

DX,AB =0.5x (DX,A + DX,B)'

4. The new distance matrix in this case would be that in
Table 27.8.

5. These and the subsequent steps are summarized in
Table 27.9 below.

B

FIGURE 27.15. Refined subtree with A and B on tips and
node between them at midpoint.



TABLE 27.8. Diagonal matrix—Step 2

OTUs AB C D E
C 4
D 6
E 6
F 8 8 8

One of the great advantages of UPGMA is that it is very
fast. However, with speed comes some inaccuracy. Perhaps
most critical is the assumption that evolution has been
clocklike (i.e., that the rates of evolutionary change are uni-
form in different evolutionary branches). Given this clock-
like constancy, then all of the tips in a tree must be equidis-
tant from the root of the tree. Such a tree is called an
ultrameric tree. In mathematical terms, this means that for
any three OTUs (e.g., A, B, and C), the distance between
any two (e.g., AC) is always less than or equal to the maxi-
mum distance between the other two (AB and BC):

Dac £ max(Dag, Dgc).

This is illustrated in the tree in Figure 27.16. Looking at
Dac, for example, we see that it passes the test because Dac
= 6 and max(Dag, Dgc) = 6. Likewise, all of the other possi-
ble OTU pairs also meet this criterion.

Although it would be nice if all evolutionary distances
met this ultrameric criterion, this is not the case. For exam-
ple, if the rate of evolution is not the same in all branches,
as in the tree in Figure 27.17, the ultrameric criterion is not
met for at least one pair of OTUs—for BC, in this case. Be-
cause Dgc = 6 and the max of (Dag, Dac) is 4.5, Dgc >
max(Dag, Dac). When the ultrameric criterion is not met,
UPGMA will return an incorrect tree. A more detailed ex-
ample of this error is given in Table 27.10.

Neighbor Joining: Many other distance algorithms have
been created that attempt to infer trees accurately, even in
the face of the vagaries of evolution such as the unequal
rates problem outlined in the discussion of UPGMA above.
We consider here one example of an alternative method—
neighbor joiningThis method resembles the UPGMA

2

A
1

2

B
3
C
FIGURE 27.16. An ultrameric tree. (Redrawn from

http://www.icp.ucl.ac.be/~opperd/private/upgma.html.)

0.5

C

FIGURE 27.17. Tree in which rate of evolution is not the same
in all branches.

clustering method but has some unique properties. Most
importantly, it allows for unequal rates of evolution in
different branches of the tree. Furthermore, if the distance
matrix is an accurate reflection of the real tree, neighbor
joining will always infer the true tree. Neighbor joining
works in the following way.

Step 1. Generate a distance matrix. (For now, as with UP-
GMA, we assume this is given. In the next section we
discuss how these are made.)

Step 2. Assume an ambiguous tree with all of the OTUs in
the matrix branching from a single central node, thus
forming a star-like pattern (see Table 27.11).

Step 3. For each OTU, calculate a measure (S) as follows: S
is the sum of the distances (D) between that OTU and
every other OTU, divided by N -2, where N is the total
number of OTUs.

Step 4. Calculate the distance D;; between each OTU pair
(e.g., A and B).

Step 5. Identify the pair of OTUs with the minimum value of
Step 6. As in UPGMA, join these two taxa at a node in a sub-
tree.

Step 7. Calculate branch lengths. Unlike UPGMA, neighbor
joining does not force the branch lengths from node X
to | (Dy;) and to ] (D) to be equal (i.e., it does not force
the rate of change in those branches to be equal). In-
stead, these distances are calculated according to the
following formulas:

Dxi = (1/2) DIJ Tr (1/2) (S, = Sj)/
Dy = (172) Dy + (172) (S, = ).

Step 8. Calculate a new distance matrix with | and ] merged
and replaced by the node (X) that joins them. Calculate
the distances from this node to the other tips (K) by

Dy = (D + Dy = Dy)/2.
Step 9. Repeat.

A detailed example is given in Table 27.11 in which the
same “true” tree as in Table 27.10 is used.
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Box 27.3 Continued.
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Chapter 27 ¢ PHYLOGENETIC RECONSTRUCTION

For Distance Methods, Corrections Are Essential to Convert
Measures of Similarity to Evolutionary Distances

So far, we have assumed that one is given an evolutionary distance matrix to use in a
distance-based inference. Of course, this is not how it works—one is not simply
handed a distance matrix to use. Instead, one needs to generate a distance matrix from
some comparison of the OTUs in question. Here, we discuss how such matrices are
made from sequence alignments.

In the simplest case, a distance matrix is made directly from measures of the iden-
tity of different sequences, where the distance is a measure of the difference (D) be-
tween two sequences (I and J) in an alignment. In this case, the difference is calcu-
lated as 1 — percent identity (I). That is, D;; = 1 — I;;.

This difference-based distance, however, is imperfect for most applications because,
in most cases, distance-based reconstruction methods assume that the D used in the
distance matrix is a measure of the total extent of evolutionary separation between
lineages, also known as an evolutionary distance (which we refer to here as d). One
reason that the difference-based D is not necessarily a good approximation of d is that
percent identity does not take into account all of the information available in a se-
quence alignment. For example, in protein sequence alignments, using percent iden-
tity would give the same value when two sequences have similar amino acids (e.g., va-
line [V] in one and isoleucine [I] in another; both of these are small hydrophobic
amino acids) as when they have very different amino acids (e.g., aspartic acid [D] in
one and tryptophan [W] in another). In most cases, one would consider a change be-
tween V and I to count less than a change between D and W. Thus, many distance cal-
culation methods try to take this into account. One way to do this is simply to group
amino acids by their chemical similarity and then calculate similarity (S) scores, rather
than identity scores. An alternative way of calculating similarity scores is to use infor-
mation on the actual probability of changing between two amino acids in known pro-
teins (see Box 27.1). However S is measured, it can then be used to calculate a more
robust “dissimilarity” D: D = 1 — Sj;.

Another related issue in using the “difference” measure to fill out a distance ma-
trix is that most measures of D do not scale linearly with any discrete measure of evo-
lutionary separation, such as time or number of generations. For example, consider a
case where one runs a computer simulation of two DNA sequences evolving and di-
verging over time where the rate of change is kept completely uniform. If the percent
difference versus time is plotted, the results are something like those seen in Figure
27.18 with an asymptotic percent difference. The percent difference saturates and can-
not get above 75% (assuming the frequency of the nucleotides is uniform). Another
way of looking at this is that the relationship between percent difference and time is
not linear. A true evolutionary distance (d), one that would be most useful for phylo-
genetic inference, should be more linear.

The nonlinearity described above is due to the discrete size and number of possi-
ble character states found in DNA sequences. Because there are only four possible states
and a limited number of sites, as more time elapses, the probability increases that a
specific site will be hit by multiple changes. For example, if, in generation 10, site 20
in a sequence changed from A to T, and then, in generation 200, the site changed from
T to C, when the two sequences at this site are compared, there could be no increase
in their difference after the first change; that is, the second change does not contribute
to the dissimilarity. Note that this is true whether the second change occurs in the
same lineage with the original change or in the lineage to which this sequence is being
compared. Either way, there are “multiple hits” for a single site.

A simple correction for this was made by T.H. Jukes and C.R. Cantor, who showed
that a more robust evolutionary distance can be calculated from percent difference:
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FIGURE 27.18. Distance corrections. If evolution occurs at a constant rate, then the percent dif-
ference between two OTUs should increase linearly with time (blue dashed line). However, this
only applies if there are an infinite number of traits and states being compared. This does not occur
with real data. For example, with DNA sequence data, there are only four possible states at any
one character. This means that as two DNA sequences diverge, there is a limit to their maximum
divergence. In addition, if multiple mutations occur at one site, the difference between the two DNA
sequences will be less than the “evolutionary distance” between the organisms. The percent differ-
ence versus time will look something like the red solid line in this graph. For this reason, distance
correction methods have been developed that allow the conversion of the solid line to the dashed
line so that one can estimate the evolutionary distance from measures of percent difference.
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where A is the fraction of sites that are different between two sequences, N is the num-
ber of character states, and D is the corrected evolutionary distance. Thus, for DNA
sequences the formula is

D = (-3/4) x In(1 - (4/3) X A),
and the formula for amino acid sequences is
D = (~19/20) x In(1 - (20/19) x A).

The Jukes—Cantor correction is designed for situations where rates of all types of
changes are uniform. However, that is not always the case: For example, in most types
of genes, DNA transitions occur at a higher rate than DNA transversions (see Chap-
ter 12). Thus, to calculate an evolutionary distance in such situations, the “Kimura-2
parameter” distance correction, which allows for two discrete types of changes in the
calculation of the distance, can be used. These are the two simplest distance correc-
tion methods. Other more elaborate and sometimes more useful ones have been de-
veloped, but for our purpose here the important thing is that corrections are needed.
It is important to realize that the models used to make these distance corrections are
also useful in other phylogenetic and sequence analyses. For example, one can use the
Jukes—Cantor or Kimura-2 parameter calculations to score sequence alignments. In ad-
dition, they can be used to assign weighted parsimony scores and for the models used
in likelihood-based phylogenetic analysis (see next section).

A general problem for the Jukes—Cantor and Kimura-2 parameter corrections, as
well as many others, is that they assume that base composition or amino acid com-
position is uniform and stationary over time. When this is not the case, these meth-
ods can produce distance matrices that lead to incorrect tree inference. One method
that corrects for this is the LogDet distance correction approach (see later section on
Variable Rates and Patterns).

One of the great advantages of distance-based phylogenetic reconstruction meth-
ods is that they can be applied to diverse types of comparative biological data. As long
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as the distances between taxa can be calculated, these distances can be fed into a tree-
building algorithm. Just because a distance can be calculated does not mean that it is
useful. For example, a distance matrix could be built based on the difference in height
between animal species. If this matrix were fed into a tree-building algorithm, the re-
sulting tree would group mice and small lizards together and giraffes and elephants
together. This nonsense results because similarities and differences in height do not
correspond to evolutionary distance no matter what correction is used. Nevertheless,
if the right types of data are used, distance methods can be a very powerful tool in
phylogenetic analysis.

Likelihood and Bayesian Approaches Have a Sounder Statistical
Foundation Than the Other Methods

One limitation of both the distance and parsimony methods is that although they may
select one tree over another on the basis of some criterion, it is not possible to say
how much more plausible one tree is than another. Likelihood and Bayesian methods
have been designed to provide a statistical framework for phylogenetic reconstruction.

To understand how likelihood-based phylogenetic methods work, we must con-
sider the concept of likelihood in a statistical sense. For our purposes, the important
concepts can be understood by considering a simple example involving coin tossing.
Suppose we were able to make some observations of the tossing of a coin and we
wished to test whether the coin was “fair” (i.e., that it had an equal probability of yield-
ing heads or tails). The observations would be considered our data, or D. Suppose we
wanted to test two possibilities: hypothesis H; that the coin is fair and has an equal
probability of yielding heads or tails, and hypothesis H, that the coin is biased toward
heads by a 60:40 ratio. We need to determine what the probability is that the hypoth-
esis explains the data, or in other words, what the probability of the hypothesis is,
given the data. This can be written as Prob(H|D).

Using this concept of conditional probability, the probability of a hypothesis given
the data equals the joint probability of the hypothesis and the data divided by the
probability of the data. This is represented in Bayes theorem as

Prob(H and D)
Prob(H|D) = W. (1)

The joint probability term (Prob(H and D)) is equivalent to the probability of the
data given the hypothesis (Prob(D|H)) times the probability of the hypothesis
(Prob(H)). Thus, Equation 1 can be rewritten as
Prob(D|H) x Prob(H)

Prob(D)

Prob(H|D) = (2)

Next, a ratio is calculated that compares the probability of hypothesis 1 given the
data to the probability of hypothesis 2 given the data by simply replacing H with H,
or H, and taking a ratio:

Prob(H,|D)  Prob(D|H;) X Prob(H,) + Prob(D)

= . 3

Prob(H,|D)  Prob(D|H,) X Prob(H,) + Prob(D) 3
The Prob(D) can then be canceled out to produce

Prob(H,|D)  Prob(D|H,) X Prob(H,) @)

Prob(H,|D) ~ Prob(D|H,) X Prob(H,)
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which can be rearranged to

Prob(H,|D) . Prob(D|H,) X Prob(H;)
Prob(H,|D)  Prob(D|H,) x Prob(H,) ’

: N

Odds Ratio = Likelihood Ratio x Prior Odds Ratio.

The goal in the coin-tossing test is to determine the left portion of this equation,
which is known as the posterior odds ratio or just the odds ratio of the two hy-
potheses. Unfortunately, this calculation is not usually possible because it requires
knowledge of the ratio of the probabilities of the two hypotheses (the prior odds, the
far right term in the equation) prior to making any observations. Without prior in-
formation, we cannot know this. Fortunately, there is one portion of the equation that
we can calculate—the likelihood ratio—which is the ratio of the probabilities for the
data given each hypothesis. The probability of a particular dataset, given a hypothesis,
is known as the likelihood (L) of the hypothesis. These likelihoods are the values cal-
culated by maximum likelihood phylogenetic methods.

For the coin-tossing example, it is relatively straightforward to calculate the prob-
ability of the data given each of the two hypotheses. Suppose one observed the pat-
tern HTTTTHTHTH in ten coin flips. The likelihood of hypothesis 1 given these data
would be Prob(D|H,) = Prob(HTTTTHTHTH|H,). To calculate this, simply use the
probability of heads or tails from the hypothesis and multiply this out replacing the
H or T with that probability. In hypothesis 1, each is 0.5, so L; = (1/2)' = 1/1024 =
0.0009765625. Do the same calculation for hypothesis 2, replacing H with 0.6 and T
with 0.4. L, = 0.0005308416. Although both of these numbers are low, L, = 1.84 X L,
and thus H, would be favored over H,; we can say that H, is almost twice as likely as
H,, given these data.

When the concept of calculating likelihood scores is applied to phylogenetic analy-
sis, the hypotheses are the different trees and the data are the observed character traits.
Thus, L = Prob(D|Tree). A detailed explanation of how to calculate L for phylogenetic
trees is beyond the scope of this book (see Web Notes). When working from sequence
alignments, L is calculated for a tree by calculating subcomponents of L for each site in
the alignment and then summing these subcomponents for all sites. To do this, an ex-
plicit model of how the character states change in multiple sequence alignments (i.e., a
model of the probability of different nucleotide or amino acid substitutions) is needed.

For example, the observation (see Chapter 12) that DNA transitions (changes from
purine to purine or pyrimidine to pyrimidine) usually occur more frequently than
transversions (changes from purine to pyrimidine and vice versa) could be taken into
account. To do this using a likelihood method, a 4 x 4 matrix is created with proba-
bilities of change assigned to each cell in the matrix (Table 27.12). This matrix is used

TABLE 27.12. Example of a substitution matrix
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in basically the same way as the scoring matrices for the database searches, alignments,
and distance corrections used above, except that the values in the matrix are proba-
bilities of change, rather than specific scores. Once such a rate matrix has been ob-
tained, the probability that the data would be generated given a particular tree can be
calculated. Other strategies that take into account variation in the rate of change are
discussed in the section Issues in Phylogenetic Reconstruction because they are useful
in distance and parsimony methods.

One significant consequence of incorporating probabilities of change in this
method is that accurate calculation of likelihood scores now requires knowing not only
the branching pattern of a tree but also the branch lengths. In contrast, parsimony
methods simply count changes and use that data to calculate the branch lengths. Like-
wise, distance methods use strategies to calculate branch lengths from the dissimilar-
ity data. In most cases, it would be too computationally costly to search through all
trees and all possible branch lengths of trees. Therefore, likelihood methods frequently
calculate branch lengths using an alternative method such as a distance algorithm and
then use those branch lengths in the calculation of L.

Likelihood phylogenetic reconstruction methods resemble parsimony methods in
that different trees are compared and given a score. They differ significantly in that
their tree scores are likelihood values. The “best” tree is identified as the one that has
the highest probability of producing the observed character data, assuming a particu-
lar model of how characters change over time. For both likelihood and parsimony
methods, searching through tree space becomes computationally intense and the num-
ber of possible trees may be too large to evaluate them all.

Recently, an interesting and powerful offshoot of likelihood methods that has be-
come more commonly used is the group of “Bayesian” phylogenetic reconstruction
methods. These methods attempt to calculate a different portion of the likelihood
equations shown above: the posterior probability (Prob(H|D) in Equations 1-4). Thus,
rather than trying to calculate the probability that a particular hypothesis could gen-
erate the data, Bayesian methods seek to calculate the actual probability of the hy-
pothesis by attempting to assign a value to the prior odds term of the equation.

As in the discussion of likelihood phylogenetic analysis above, the hypothesis here
is a particular tree and the data we consider is a sequence alignment. Also, as in like-
lihood methods, the hypotheses are tested using particular models of sequence evolu-
tion. Bayesian methods can make use of the same models of DNA substitution used
for likelihood analyses.

One challenge for Bayesian methods is that they need to specify the priors—the
probability of the data and the probability of the hypothesis. Another challenge is that
the posterior probability cannot be calculated analytically because a full solution re-
quires one to make calculations across multiple parameters and all possible trees. Cur-
rently, the way the posterior probability is solved is by using what are known as Markov
chain Monte Carlo (MCMC) simulations. In these simulations, a program will take a
starting tree and change certain portions of it. The new tree is then given a probabil-
ity of being accepted or rejected. If it is accepted, then it serves as the starting point
for subsequent tree searches. If it is rejected, the original tree is used. A record of the
trees that are “visited” in this searching process is kept. The posterior probability for
each tree is estimated from the amount of time the searching program spent with that
tree as the accepted tree. A significant advantage of Bayesian MCMC methods is that
they can be used to calculate posterior probabilities of particular groups in a tree much
like bootstrapping (see later section) would be used for other phylogenetic methods.
Although posterior probabilities are not equivalent to bootstrap values, they do indi-
cate some measure of the support for a particular phylogenetic grouping. Most im-
portantly, posterior probabilities can be calculated much more rapidly for large data
sets than bootstrap values can be calculated for likelihood analyses.
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A very powerful use of likelihood and Bayesian methods is that they allow for test-
ing of a variety of evolutionary hypotheses within a statistical framework. For example,
if one were confident in the accuracy of a particular evolutionary tree, one could then
ask: Given this tree, what models of sequence evolution best fit the data to the tree?

[ EVALUATION OF METHODS AND TREES

Tree Reconstruction Methods Can Be Evaluated Objectively

Each method used to construct phylogenetic trees has its advantages and disadvan-
tages. Some researchers favor one method over another on principle. For example,
some advocate parsimony methods out of respect for the principle of Occam’s razor,
whereas others prefer the statistically based likelihood methods. Distance methods are
valued for their ability to use any type of data easily. However, these methods differ
not only in philosophy, but also fundamentally in their results. An extensive analysis
of the pluses and minuses of each method is beyond the scope of this chapter. Here,
we discuss some of the approaches that are used to evaluate various tree construction
methods and the trees they produce.

One practical criterion for evaluating methods is efficiency (i.e., how fast each
method performs). Even though computers become ever faster, efficiency remains a
major concern because some of these methods are very computationally demanding.
Both parsimony and likelihood methods must scan through tree space; thus, they take
much longer to process the same dataset than a distance method would. Likelihood
methods are often slower yet due to their typically more complex calculations.

Another vitally important criterion is whether, given sufficient data, the method will
reliably generate the correct tree (i.e., its consistency). An inconsistent method will fre-
quently produce the wrong tree even if given infinite amounts of data.

A third criterion, the statistical power of a method, relates to the chance that the
null hypothesis will be rejected when that hypothesis is wrong.

All phylogenetic methods make assumptions about the evolutionary processes that
underlie the character changes being studied. Because the accuracy of these assump-
tions is not always known, methods are also evaluated by comparing their degree of
dependency on these assumptions (i.e., their robustness). A fifth and related criterion
is the method’s falsifiability (i.e., whether or not the results produced will allow us to
determine if the underlying evolutionary assumptions have been violated). This is es-
pecially important for methods that are not very robust.

Phylogenetic Methods Can Be Tested Using Datasets
with Known Histories

How are the consistency, power, and robustness of various methods determined? The
best way is to gather datasets with known evolutionary histories and then evaluate the
ability of the different methods to construct accurate trees from the data. The results
of such tests are very informative. Where can such datasets be obtained? There are three
main sources: in silico computer simulations, in vitro lab simulations, and “real” data
with known history. We provide a few examples of these approaches in this section.
As we discussed earlier, the UPGMA method, in theory, should not perform as well
as neighbor joining when the rates of evolutionary change are not uniform in all evo-
lutionary branches. This prediction can be readily tested in silico using computer sim-
ulations to create trees with different rates of change for different branches. We start
with a gene sequence at the root of the tree and evolve the sequence to produce a tree
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with the desired properties. Through such testing, not only does UPGMA generally
not perform as well as neighbor joining under these conditions, but, most importantly,
UPGMA is also inconsistent in that it gives the wrong tree no matter how many char-
acters are included in the analysis.

This inability of UPGMA to handle varying rates effectively was readily predictable
from its methodology alone. Many less obvious problems have been revealed in large part
through computer simulations. For example, recall from Chapter 5 (p. 130) that long-
branch attraction (LBA) is a phenomenon in which phylogenetic reconstruction meth-
ods group together OTUs that are at the end of long branches, whether or not the group-
ing is actually warranted by their relatedness. An example of this is shown in Figure 27.19.

Simulations have shown that all known phylogenetic reconstruction methods are
prone to distortion by LBA. The underlying culprit here is homoplasy: the creation of
identical character states by separate evolutionary events. Homoplasy can occur dur-
ing either parallel or convergent evolution. Simulations have shown that if the dataset
we are studying has two nonsister OTUs at the end of long branches, we will observe
more homoplasy between those taxa than expected. This occurs because the longer the
branches, the more evolutionary changes, and thus the higher the probability that
some characters (e.g., sites in their gene sequences) will change to the identical char-

A Real tree
1
2
3
4
5
B Inferred tree 3
2
1
4
5

FIGURE 27.19. A simulated example of long-branch attraction. (A) The real tree of the relation-
ships among five taxa, with two taxa (2 and 3) having long evolutionary branches. (B) An inferred
tree of the taxa in which 2 and 3 are artificially grouped together because of the phenomenon of
long-branch attraction.
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A

Sequence 1 GACGAG
Sequence 2 GCCGAC

B
Sequence 1 Sequence 2
GACGAG GCCGAC
G— Aat C— Aat
position 5 position 5
GACGGG GCCcGcCce
G— Cat
G— Aat position 5
position 2 G— Cat
position 6
GGCGGG Gccceaa ) Ancestral sequences

FIGURE 27.20. Homoplasy in sequences. Homoplasy refers to the presence of identical character
states that did not arise through shared descent but rather by some other process, such as conver-
gent evolution. This can occur with any character, including molecular sequences. For example,
consider these two aligned DNA sequences (A), which both have an A at position 5. If the ances-
tor of Sequence 1 was GACGGG and the ancestor of Sequence 2 was GCCGCC (B), then the shared
As at position 5 are not a reflection of common ancestry and are instead an example of homoplasy.

acter state. This is a form of homoplasy (e.g., see Fig. 27.20). Furthermore, simulations
have revealed that all methods are subject to errors from LBA.

Using other approaches, computer simulations can also test the robustness of par-
ticular methods (i.e., how well the method performs when its underlying assumptions
are not met). For example, one can ask how well a likelihood method performs when
the simulated data were generated using an evolutionary pattern different from that
used in the likelihood reconstruction.

Of course, the use of computer simulations for testing can be criticized because
situations that may never occur in nature are being tested. To counter this, in vitro
simulations have been developed in which real organisms are forced to evolve with
particular branching patterns. Data are gathered from the resultant organisms and then
used to test phylogenetic reconstruction methods. This approach has the advantages
of allowing for many of the vagaries of biological systems and real data collection, as
well as enabling the testing of performance on data with specific phylogenetic branch-
ing patterns. In vitro simulations have been done with many biological samples, most
commonly with bacteria and/or their viruses. Slightly more controlled simulations
have been performed using in vitro gene evolution as discussed on pp. 102-103 and
458-460. In both cases, these in vitro simulations that involve some level of “real” bi-
ology are an important complement to in silico testing.

It is also possible to test phylogenetic methods using data collected from nonsim-
ulated situations if there is extreme confidence that the underlying tree for the organ-
isms is known. This requirement can be met by using breeds of domesticated animals
or plants for which the history is known very accurately.

Phylogenetic Reconstructions Can Be Assessed in Several Ways

When the true evolutionary history is not known, a variety of tests can be used to as-
sess the results of a phylogenetic reconstruction method. One important question to
ask in this regard is: When the method has selected the ideal tree for a dataset, how
well does that tree represent all of the underlying data? This is an important question
because all phylogenetic reconstruction methods will output a tree or a few select trees.
It is possible that such trees exhibit all of the underlying data perfectly, or they could



Chapter 27 ¢ PHYLOGENETIC RECONSTRUCTION

simply be an average of multiple conflicting datasets. For example, imagine that the
dataset includes a multiple sequence alignment in which the right half has one history
and the left half has another. This could be due to recombination or gene transfer or
artifacts of data collection, for example. A phylogenetic tree generated from these data
might not represent the history of either the left half or right half well. Thus, meth-
ods for determining how well a particular tree represents the data in hand are needed.
In the following sections we discuss some of the common approaches used to assess
how well particular trees represent the underlying data.

One approach to assessing how well a tree represents all of the data is to resam-
ple the data repeatedly and reperform the phylogenetic analysis to see how often the
same result is obtained from these resampled (and nonidentical) datasets. Resampling
can be done by bootstrapping in which the characters (e.g., alignment columns) are
resampled with replacement, or by jackknifing, in which the characters are resampled
without replacement (Fig. 27.21). Frequently, 100 or 1000 of these new resampled
datasets are generated and a phylogenetic tree is built from each of them. The new

A Bootstrapping

Alignment of sequences

Species 1 AT GATGGTGAT
Species 2 AT G, AGAA
Species 3 AT GG, GAA
Species 4 AT GCAGCCGCC

Bootstrapping alignment #1

Species 1 AT

Species 2 AT G, AAAA
Species 3 AT G

Species 4 AT GCEECccecece

Bootstrapping alignment #2

Species 1 ATGGGGGATGGTGAT
Species 2 ATGGGGG. AGAA
Species 3 ATGGGAGG. GAA
Species 4 ATGGGAGCAGCCGCC

B Jackknifing

Alignment of sequences

Species 1 ATGTTGGATGGTGAT
Species 2 ATGTTGGAAGGAGAA
Species 3 ATGTTAGGAGAAGAA
Species 4 ATGTCAGCAGCCGCC

Jackknifed alignment 1 (10 columns kept)

Species 1 AT-T-GGA-GG-GA-
Species 2 AT-T-GGA-GG-GA- FIGURE 27.21. Bootstrapping. (A) Bootstrapped
Species 3 AT-T-AGG-GA-GA- alignment #1. The columns in green and light blue
Species 4 AT-T-AGC-GC-GC- are not part of the new alignment and the columns
in yellow and red are present twice. Bootstrapped
Jackknifed alignment 2 (10 columns kept) alignment #2. The columns in green and light blue
are present but the two columns in dark blue are
Species 1  GTTGG--GGT—-AT not and the column in pink is represented three
Species 2 C_GTTGG--CGGA-AA times. (B) Jackknifing. Alignments are resampled
Species 3 --GTTAG--GAA-AA without replacement such that the new alignments

Species 4 -—-GTCAG--GCC-CC have fewer columns than the original.
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FIGURE 27.22. Consistency index (Cl). A Cl score has been plotted for the whole genome of hep-
atitis C viruses. First, an alignment of whole genomes of different hepatitis C viruses was made.
Then a phylogenetic tree was inferred for the complete alignment. Third, small regions of the whole
alignment were analyzed to determine how consistent the data in that region was relative to the
tree of the whole genome. A sliding window of different base pair lengths was used and the ClI
for each position in an alignment of complete genomes was averaged over this window. Window
sizes are 100 (red), 300 (blue), or 500 (black) nucleotides. (Redrawn from Hraber P.T. et al. 2006.
Virol. J. 3: 103, Fig. 3a.)

trees are then compared to determine in what fraction of the trees particular evolu-
tionary groupings are found. It is very important to realize that these tests do not de-
termine how accurate a tree is, just how well it reflects the underlying data. If the data
are biased in some way (e.g., there has been significant convergent evolution), the re-
sult can be high bootstrap or jackknife support for an incorrect tree.

Another strategy for detecting discrepancies in the underlying data is to compare the
tree generated based on all characters with the trees produced by analysis of each char-
acter separately. The most straightforward way of doing this is to use parsimony meth-
ods. First, generate the actual tree from all of the data available. Next, determine the num-
ber of parsimony steps required for the first character based on that actual tree (i.e., the
“actual steps”). Then, generate a tree based on just the data for that first character and
determine the number of parsimony steps required in this tree. Because this second tree
is optimized for the first character, the number of parsimony steps would be the “mini-
mum possible steps.” Calculate the consistency index for that character as the ratio of
those two numbers: minimum possible steps divided by actual steps. A ratio of 1 would
indicate a perfect fit. The value of the ratio approaches zero asymptotically as the fit di-
minishes. This ratio would be determined for all characters in the dataset (Fig. 27.22).

A third approach to assessing phylogenetic inferences is that one can compare the
trees generated with different methods and ask how similar they are to each other (i.e.,
one can test their congruency). To measure congruency, one could determine which
parts of the trees agree with each other and which parts differ, or one could score the
number of differences in tree branching (Fig. 27.23).

I ISSUES IN PHYLOGENETIC RECONSTRUCTION

In addition to the methods for evaluating trees described above, a number of issues
must be considered when performing any phylogenetic reconstruction.

The Root of a Tree Can Be Determined Using an Outgroup

A key step in phylogenetic reconstruction is determining the root of a tree. This is an
important step for many reasons. For example, to infer ancestral traits for nodes on a
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Paromius exiguus (Lygaeidae)
Poecilocoris lewisi (Scutelleridae) L

100 e Agonoscelis nubila (Pentatomidae) 0.1
98/98 * Plautia crossota (Pentatomidae)
—_— Brachyplatys subaeneus——————
99 100 + ] 100
86/89 ] I Brachyplatys vahlii-——————— 100/99
100 100

100/100

————Megacopta punctatissima——————-

Buchnera aphidicola (aphid Acyrthosiphon pisum) 100
[ Buchnera aphidicola (aphid Yamatocallis lokyoensis)ﬂ—
0.1 Buchnera aphidicola (aphid Geoica urticularia) 1007100

68/83

FIGURE 27.23. Example of phylogenetic congruence involving symbionts of plataspid stinkbugs (a
type of insect). The phylogeny of plataspid stinkbugs (leff) and their bacterial endosymbionts (right)
is compared, showing that the topology of the trees is identical for the overlapping organisms.
Each of the nodes is labeled with measures of support in different types of phylogenetic recon-
struction (posterior probabilities in the Bayesian analysis) (above) and bootstrap probabilities as MP
(maximum parsimony) analysis/ML (maximum likelihood) analysis (below). (Redrawn from
Hosokawa T. 2006. PLoS Biol. 4: €337, Fig. 5.)

tree (see Chapter 5), it is important to know where the root of the tree is, which in
turn allows a full assessment of the direction of change. This is not possible in an un-
rooted tree because the ancestral node could then be placed anywhere on the tree.
Rooting also allows one to determine which groups are monophyletic (i.e., are com-
posed of the most recent common ancestor of all members of the group plus all of
the descendants of that common ancestor, excluding all other taxa).

Here, we describe two methods commonly used to root trees. The simpler, al-
though frequently less accurate, way to root a tree is known as midpoint rooting. It
defines the root as the center of mass of the branches and locates it roughly equidis-
tant from all of the tips. Although this method is useful when there is no other way
to root the tree, it can lead to wildly inaccurate rootings unless the taxa being studied
all evolved in a clocklike manner.

The second method is more accurate, but it is not always possible to use because it
requires an outgroup, a taxon that diverged from the tree prior to the existence of the last
common ancestor of all of the other taxa being studied (which are known as the ingroup).
Outgroups allow one to root the ingroup tree. For example, suppose that the relationships
between four species are known, as shown in this unrooted tree in Figure 27.24. If species
3 were determined to be the outgroup, the tree could be rooted by extracting species 3
(the outgroup) and connecting it to the others (the ingroup) via the root.

The biggest problem associated with outgroup rooting lies in identifying an out-
group and then gathering the information that is needed for the tree-building analy-
sis. Perhaps the best example of how difficult this can be is seen in studies of the early
evolution of life (Chapter 4). To determine the order of branching among archaea,
bacteria, and eukaryotes, the tree of life must be rooted. However, there is no outgroup
for this ingroup because such an outgroup would have to be from “The Fourth Do-
main”—a group of species that separated from the tree prior to the existence of the
last common universal ancestor (LUCA). Because no such fourth domain is known,
an outgroup cannot be used to root the archaea—bacteria—eukaryote tree. Interestingly,
as discussed on pages 126—129, it is possible to root this tree using duplicated genes.

o -———Coptosoma japonicum —————————= U
89/92 100 { } 100 83/99
1007100 ——- Coptosoma sphaerula - —————————— 1007100

FIGURE 27.24. Rooting a tree
with an outgroup. (A) Unrooted
tree. (B) Suppose species 3 is de-
termined to be the outgroup.
Then the tree can be rooted be-
tween 3 and the other taxa (root
shown as red dot). Branches are
labeled with letters for easier
comparison of B and C. (O
Rooted tree.
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It Is Important to Account for Variable Rates
and Patterns of Evolution

Some instances of nonuniform evolutionary rates were discussed above, including their
impact on phylogenetic reconstructions. For example, the examination of UPGMA and
LBA showed how rates of evolution can vary between different branches in a tree. The
explanation of likelihood methods illustrated how accounting for different rates of
transitions and transversions can be useful when assigning likelihood scores to differ-
ent trees. In principle, there seem to be nearly an infinite number of factors that could
cause evolutionary rates to vary. This section discusses some of the most important
factors that need to be taken into account.

Different Types of Substitutions

It is a nearly universal feature of evolution that when there are multiple possible states
for a given character, not all possible changes occur with equal probability. Although
it is not possible to take into account all of the possible variations in rates of change,
it is important to identify the most significant ones and account for these by building
and then using a substitution matrix.

When performing phylogenetic reconstruction from gene sequences, there are two
steps where these adjustments can be readily applied. The first step is during the align-
ment, where the different probabilities for various nucleotide substitutions can be con-
sidered when identifying homologs or making multiple sequence alignments. The sec-
ond step is when making phylogenetic inferences. Thus, the procedure varies
depending on the reconstruction method used. For likelihood methods, the model can
be adjusted. For distance methods, adjustments can be made when calculating dis-
tances from the data. For parsimony methods, different scores can be assigned to dif-
ferent types of changes.

Different Nucleotide or Amino Acid Composition

One major challenge in phylogenetic analysis of sequences is that the frequency of par-
ticular nucleotides or amino acids is not uniform. For example, the average G + C
content of DNA varies significantly between species, with some having as low as 15%
G + C and others above 75%. There is also significant variation within genomes (e.g.,
in GC isochores in vertebrates). The same type of phenomenon is seen when the amino
acid composition of proteins is compared. In many cases, the exact reasons for the
variation between and within species are not known. Whatever the cause, there is a
significant effect on phylogenetic analysis in that it can lead to more homoplasy than
expected. For example, consider two distantly related organisms, each with a G + C
content of 50%. Suppose further that they separately then change their average G + C
content to 20%. When this occurs, which is common, what one usually sees is that
most of the G + C content changes are focused in less constrained regions of the
genome (e.g., pseudogenes, introns, and third positions in codons). Some changes also
occur, even in what one might consider highly constrained regions of the genome. If
a phylogenetic analysis were attempted including these organisms, the result would be
these organisms being pulled toward each other in the trees—that is, a reconstruction
would overestimate their phylogenetic relatedness.

When there are large differences in nucleotide or amino acid composition between
the sequences being studied, it is thus important to try to correct for composition-driven
homoplasy. In such cases, it is necessary to use methods that do not assume “stationar-
ity”—that is, that composition is uniform between organisms. One common approach
to handling nonstationarity is to use what is known as a LogDet correction (see Chap-
ter 27 Web Notes) for calculating evolutionary distances between pairs of sequences.
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Weighting by Codon Position

Just as the rate of change can differ for different nucleotide substitutions, so, too, can
the rate vary at different sites within a gene. For example, when analyzing protein-cod-
ing DNA sequences, researchers immediately noticed that the three different positions
within each codon (1, 2, 3) tend to evolve at different rates, with the third position
evolving much more rapidly than the others. This is primarily because the third posi-
tion can often change without changing the amino acid at that position because of the
degeneracy of the genetic code. Because of this, more weight might be given to changes
at the first and second positions than to changes at the third positions. Although this
is similar in principle to giving more weight to transversions than transitions (see
above), here, instead of using a substitution matrix or the like, the different positions
in the gene are differentially weighted in the phylogenetic reconstruction.

Selecting Genes for Study by Their Rate of Change

For any phylogenetic analysis, one of the most important factors influencing the choice
of genes to be used for the analysis is how far back in evolutionary history to look.
When studying closely related taxa (e.g., different species within a genus), recent evo-
lutionary history is more likely to be examined, and therefore the dataset chosen must
include fairly rapidly evolving characters that have undergone sufficient changes in
state during this relatively brief period. Characters that change at very slow rates, such
as the highly conserved rRNA genes, would not be useful. On the other end of the
spectrum, when studying the relationships among bacteria, archaea, and eukaryotes in
the very distant past, characters that change at moderately slow rates are required. Oth-
erwise, any hint of similarity will probably have been erased. Thus, a balance is needed.
The traits selected for study must be those that change on a timescale similar to that
of the evolutionary events under study.

Should Protein or DNA Alignments Be Used?

Suppose a particular protein-coding gene was selected to be used to elucidate the evo-
lutionary relationships among a number of taxa. Frequently, the next question is
whether to analyze the amino acid sequences for that protein or the encoding DNA
sequences. The ideal solution would be a rigorous analysis of the DNA, codon-by-
codon, using a 64 X 64 substitution matrix to incorporate the redundancy of the ge-
netic code in the DNA analysis. However, most of the available software tools for phy-
logenetic sequence analysis do not allow this option. Usually one can analyze either
the DNA sequences or the protein sequences, but not a hybrid of the two.

The optimal choice depends on the level of evolutionary relationship being inves-
tigated. If closely related OTUs are being analyzed, then DNA analysis will likely be
more fruitful because it allows detection of synonymous changes (changes in the DNA
sequence that do not alter the amino acid sequence). If deeper evolutionary relation-
ships are being studied, then analysis of protein sequences is more appropriate because
the protein sequences change more slowly.

A related issue is whether to use DNA or protein sequences when performing mul-
tiple sequence alignments. In most cases, the answer is clear. For protein-coding re-
gions, alignments usually should be done at the protein level. This is because the re-
dundancy in the genetic code makes it difficult to generate accurate alignments at the
DNA level even when the amino acid sequences are highly conserved. One exception
is when there has been a DNA frameshift in one of the sequences such that the amino
acid sequences now differ significantly but the underlying DNA sequences can still be
aligned. If analysis of the DNA is of particular interest, then sequences should be back-
aligned from the protein alignment.
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A

Protein 1 DEMGLGKK----R--VESTR

Protein 2 DEMGVGKRGH----- LESRK

Protein 3 DDMGLGRWK---R--VESTE

Protein 4 DDMGLGHKKK---- - VDSTK

Mask 11111111000000011111

B FIGURE 27.25. Masking an alignment. (A) A hypothet-
Protein 1 DEMGLGKKVESTR ical protein alignment for four homologs with a mask
Protein 2 DEMGVGKRLESRK shown beneath the alignment. Columns with a 1 in the
Protein 3 DDMGLGRKVESTE mask will be kept; those with a 0 will be deleted. (B)
Protein 4 DDMGLGHKVDSTK An alignment after the mask has been applied.

Which Alignment Positions Should be Considered?

However an alignment is generated, it is important to realize that an alignment is only
a model for positional homology. Just as one might be unsure as to whether certain
wrist bones from humans are the same bones as those in the feet of pigs, one might
be unsure as to whether a glycine at position 49 in a particular protein should be
aligned with a leucine at position 50 in a homolog of that protein. Some positions in
an alignment may be certain and others uncertain. One way to identify ambiguous
aligned regions is to compare multiple sequence alignments generated using different
parameters (e.g., substitution matrices) or different algorithms. Alignment columns
that remain the same regardless of the parameter or algorithm used can be considered
unambiguous. Those columns that are most ambiguous should be excluded from the
analysis by using a mask (Fig. 27.25). Sequence masks are also sometimes used for
other reasons. For example, some researchers routinely remove any alignment column
with a gap because they question the validity of such data in phylogenetic analysis.

[ USING PHYLOGENETIC TREES

The preceding sections focused on the building of trees for homologous genes. This
section delves into the thorny issues surrounding their use. For example, it is often as-
sumed that if a set of homologous genes is assembled from different species and those
data are used to infer a phylogenetic tree for those genes, then one should be able to
use the gene trees as species tree, as well. Alas, there are many reasons why a gene tree
may not accurately represent a species tree (see Chapter 22 for more detail). A gene
tree is a model of how genes evolved through substitution, duplication, and/or loss;
on the other hand, a species tree is a pattern of lineages and their relationships through
time. Thus, the investigator must allow for events in the history of a gene that are not
part of the history of the species, such as gene duplication, gene loss, lateral gene trans-
fer, and recombination. Even if the gene history is the same as the species history, the
history of some genes is simply difficult to infer because of factors such as convergent
evolution, highly variable rates of evolution between taxa, highly biased nucleotide or
amino acid composition, and small gene size.

In this section, we first describe how, in the face of these complications, species
trees can be inferred from gene trees. We then discuss how, given a species tree, the
occurrence of events such as gene duplications, lateral gene transfer, and convergent
evolution can be inferred.

Gene Trees Can Be Used to Infer Information about Species Trees

Even though it cannot be assumed that a gene tree accurately reflects the tree of the
species in which those genes reside, it is still possible to use gene trees to infer infor-
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mation about species history. It is important to select carefully which gene or genes
will be used, because some genes have been found to be more robust indicators of
species phylogeny than others. We have already seen one classical example of this: the
ss-TRNA genes. As discussed in Chapters 5 and 6, phylogenetic studies of this gene rev-
olutionized our understanding of the evolution of microorganisms. These genes are
superior markers of species evolution for a variety of reasons, including the following.

1. ss-rRNA genes contain both highly conserved regions and highly variable regions,
thus allowing their use in studies of both recent and ancient evolutionary events.

2. These genes are relatively easy to clone from new species or even uncultured or-
ganisms.

. They are present in all organisms.
. They have the same (or at least very similar) functions in all organisms.

. They are relatively resistant to lateral gene transfer between species.

AN U s~ W

. Sequences of these genes from more than 200,000 different organisms are now
available in public databases.

Still, they are not without their faults. Potential problems due to reliance on these
genes to study species evolution include the following.

1. Because ss-rRNA genes are present in multiple copies in most species, they can
undergo processes such as gene conversion, unequal crossing over, and deletion
(see Chapter 12), all of which complicate phylogenetic reconstructions.

2. Their sequence composition (e.g., G+C percentage) is biased by the growth tem-
perature of the organism (see Chapter 5) in such a way that distantly related or-
ganisms that live at similar temperatures will converge on similar sequences.

3. There are some documented cases of lateral transfer of these genes.

4. Their evolutionary rate varies among taxa, thus leading to phenomena such as
long-branch attraction.

5. The rate of sequence change even in the more rapidly evolving regions of these
genes is still very low, thus limiting their utility for studies of closely related taxa.

In summary, although ss-rRNA genes are a useful marker present in all species,
they are not necessarily the ideal marker to use and probably should not be the only
one used.

A wide variety of genes are commonly used to trace the evolution of species. Some
are “universal” genes that are present in all taxa, including the genes that encode RNA
polymerase subunits, ATPases, translation elongation factors, and various ribosomal
proteins. All of these genes tend to be quite highly conserved at the sequence level and
thus are not very useful when comparing closely related species. When investigating
evolution within the eukaryotes, for example, less universal genes might be preferred.
Studies of plant systematics frequently use the gene encoding the large subunit of ru-
bisco (the enzyme involved in carbon fixation); likewise, studies of animal evolution
often focus on the genes encoding the cytochromes.

Just as with the ss-rRNA genes, all of these alternatives have their own problems,
and thus the results from their analysis will always be open to multiple interpretations.
For this reason, researchers often use multiple genes. How is information from multi-
ple genes incorporated into one analysis? One method is to build trees for each gene
and then compare the trees (see, e.g., Fig. 27.26). If all of the gene trees display the
same pattern, then there would be more confidence in the result. If all of the gene trees
differ, the reasons for the discrepancies need to be investigated. The discrepancies could
be the result of gene duplication, lineage sorting, hybridization, or lateral gene trans-
fer events, for example.
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Y1

Y2

Cyano

High GC

Low GC

D/T

FIGURE 27.26. Congruence of different genes. Phylogenetic trees for two genes from 65 species
of bacteria are compared. Major groups of bacteria are labeled o, B, v, §, e—subgroups of pro-
teobacteria. Cyano, cyanobacteria. High GC + Low GC, different groups of gram-positive bacte-
ria. D/T, Deinococcus Thermus phyla. (Left) RecA protein tree; (right) ss-rRNA tree. Portions of each
tree that were not well supported are collapsed into polytomies. Note that the trees of the two
genes are highly similar. (Modified from Eisen J.A. J. Mol. Evol. 41: 1105-1123, Fig. 2, © 1995
Springer Science & Business Media.)

Rather than to simply compare and contrast gene trees to each other, an alterna-
tive is to try to sum up information across multiple genes. If complete genome se-
quences are available, theoretically one could use every gene in a genome, and even
noncoding regions. In general, there are two approaches to summing up information
across many genes. The first involves concatenation in which separate alignments of
different genes are combined together into a single concatenated alignment. This con-
catenated alignment can then be used in the same manner as any other alignment (Fig.
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A Gene alignments B Concatenated alignment
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FIGURE 27.27. Concatenation. Separate alignments of individual genes can be combined together
into “mega alignments” by concatenation, whereby the alignments are stitched together keeping
the genes from one organism together in each row. (A) Alignment of four genes (different colors)
for four species (7-4). (B) Concatenation of four genes.

27.27). The advantage of this approach is that if the genes have the same history, com-
bining them can increase the strength of phylogenetic signal, which in turn may allow
some of the complications of evolution (e.g., unequal rates of change) to be overcome
and a more reliable species phylogeny to be inferred.

There is a serious disadvantage to concatenation, however. Not all genes have the
same history. Factors such as duplication and deletion, lateral gene transfer, hy-
bridization, or inheritance of ancestral polymorphisms lead to gene trees differing
from each other and from the species tree. When one concatenates gene sequences
one thus runs a risk of producing an “average” evolutionary history that is not seen
in any single gene. Thus new “phylogenomic” approaches are being developed wherein
each gene is treated separately and various models of species evolution can be tested
that allow for different genes to have different histories. By treating each gene sepa-
rately one could answer questions like “What is the extent of lateral gene transfer?” or
“When did a polyploidization event occur?” With the increased amount of genomic
sequence data, it is likely that these “whole-genome” approaches to phylogenetic re-
construction will become more and more commonly used.

Gene Duplication Events Can Be Inferred from
Combined Gene and Species Information

As discussed in the book, gene duplication can lead to the presence of multiple ho-
mologous copies of the gene within a species that are called paralogs because they
evolve in parallel within that species. Homologs in different species that evolved from
a common ancestral gene through speciation are called orthologs (Table 27.13). To
represent such events on a phylogenetic tree, the gene phylogeny is embedded within
a tree that shows the species phylogeny (Fig. 27.28). The phylogeny of the gene can be
represented separately, as shown in Figure 27.28B.

How does a gene tree lead to an inference about gene duplication events and the
determination of which genes are orthologs and which genes are paralogs? To answer
this question, a species tree based on some other information must be inferred; then
the gene tree is inferred; and finally the gene tree must be embedded in the species
tree (as in Fig. 27.28A).

One excellent example of the use of this type of analysis is the story of globin
genes. Globins are heme-containing proteins involved in binding and transporting oxy-
gen and other small molecules found in a diverse array of animal species, including
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TABLE 27.13. Types of molecular homology

Type of Homology Description

Homologs Genes that are descended from a common ancestor (e.g., all globins)

Orthologs Homologous genes that have diverged from each other after speciation
events (e.g., human o-globin and chimp a-globin)

Paralogs Homologous genes that have diverged from each other after gene dupli-
cation events (e.g., a- and B-globin)

Xenologs Homologous genes that have diverged from each other after lateral gene
transfer events (e.g., antibiotic resistance genes in bacteria)

Positional homology Specific amino acid or nucleotide positions in different proteins or genes
that have a common ancestor; frequently represented by sequence
alignments

Based on Eisen J.A. 1998. Genome Res. 8: 163-167, Table 2, © 1998 CSHLP.

humans, who encode several different globins. Figure 27.29 shows that all of these glo-
bin genes are clearly related to each other and thus are homologs.

The various globin proteins include o, B, ¥, 8, and € hemoglobin subunits, as well
as myoglobin (the oxygen-binding protein found in muscle). These proteins are all in-
volved in oxygen and carbon dioxide transport in the blood and tissues, although each
form has a slightly different function. Phylogenetic analysis of the members of the
human globin gene family, along with their comparison to globin genes in other
species, showed clearly that the human globins are related to each other by gene du-
plication events that occurred in our ancestors (Fig. 27.29). Thus, the different human
globins are paralogs of each other (they have been evolving in parallel within a species
after the gene duplication). Other mammals encode orthologs of many of the human

A B
B . 1B
o Species 1 [
2B
[; Species 2 P Gene
4 family
p
B . 5B
o, Species 3 >
6P
° l(i Species 4 L la
Duplication Duplication 20
event B ) event 30 Gene
o Species 5 4, family
o
B Species 6 50
ecies
o>P 60

FIGURE 27.28. Gene versus species tree. Overlay of gene and species trees. (A) Phylogenetic tree
of six species is shown (thick light blue lines). A common ancestor of all six species encoded a sin-
gle gene in this gene family (the single black line near the root of the tree). An early gene dupli-
cation event resulted in two copies of that gene (o and B, indicated by the blue and red lines). Sub-
sequently, the six species diverged as shown in the tree, all species inheriting both the o and B
genes. Thus, all of the o genes in all six species are orthologs of each other, as are all of the B
genes in all the species. The o and B genes are paralogs of each other. (B) Gene phylogeny (inferred
by untangling the gene tree from within the species tree). It is by comparing the gene phylogeny to
the species phylogeny that one can infer the occurrence of the early gene duplication event.
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FIGURE 27.29. Gene duplications during the evolution of the human globin gene families. The
initial split gave rise to two lineages, one leading to the modern gene for myoglobin and the other
to the globin genes. Subsequently, the proto-a-globin and proto-B-globin lineages split following
a duplication. Other duplications took place within the o and B lineages. (Modified from Strachan
T. and Read A.P. Human Molecular Genetics 2, Fig. 14.16, © 1999 Garland Science.)

globin genes. For example, chimpanzees also encode o, B3, ¥, 8, and € hemoglobin sub-
units as well as myoglobin. Each of these is the ortholog of the corresponding human
gene (e.g., the chimpanzee o.-globin is an ortholog of the human a-globin).

Inferring gene duplication events is not just an exercise in phylogeny. It can assist
us in predicting the functions of genes because orthologs frequently have the same
function in different species, whereas paralogs frequently have different functions
within a species. Thus, if a defect in a mouse globin gene is related to a particular
murine disease, then, in order to evaluate the possible involvement of a similar defect
in a human disease, it would be helpful to know whether that mouse globin was an
ortholog of a human globin and, if so, which one.

Lateral Gene Transfer Events Can Be Inferred
by Phylogenetic Analysis

The correspondence between gene and species lineages is disrupted when genes hop
from branch to branch in phylogenetic trees through lateral gene transfer (LGT). LGT
results in genes or genomic regions whose evolutionary histories differ from those of
the rest of the genome. As discussed in the book, although LGT events occur with low
frequency, they have had an important role in the evolution of some organisms, es-
pecially microbes, as well as in the evolution of organelles. Here, we discuss some of
the ways the occurrence of LGT can be inferred, dwelling in particular on the use of
phylogenetic analysis.

The ability to detect LGT often makes use of the observation that, over time, all of
the genes within a genome acquire a “signature” that is characteristic of that particular
genome. These distinctive genome-specific signatures include patterns of codon usage,
GC content, and the DNA sequences used for promoter signals and protein-binding
sites. Homologs of a gene in separate genomes diverge from each other as they evolve
in different lineages, each acquiring the signature of their respective genome. Suppose
that a gene is abruptly transferred from one genome to another (e.g., a gene encoding
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FIGURE 27.30. Stages in lateral gene transfer (LGT). The evolution of four species and one ex-
ample of LGT are shown. Some key steps in LGT are labeled: (a) Divergence of genomes of dif-
ferent lineages; (b) movement of DNA from one lineage to another; (c) maintenance and replica-
tion of the foreign DNA; (d) possible positive selection for the foreign DNA; (e) spread into the
new species’ population; (f) amelioration. (Modified from Penny D. and Poole A. Curr. Opin. Genet.
Dev. 9: 672-677, © 1999 Elsevier.)

antibiotic resistance is transferred from one bacterial species to another in the human
gut). For the transferred gene to persist in its new genome, it must acquire some means
of being transmitted from one generation to the next (e.g., by integrating into the chro-
mosome or by being carried on a self-replicating element such as a plasmid). The gene
must also acquire the promoter signals and other features necessary for gene function
within the new genome so that it can be maintained under positive selection; other-
wise, the gene will likely degrade. If it is maintained in the new genome, then, in the
course of time, the transferred gene will acquire the genome signature characteristic of
the new host genome, a process known as amelioration (Fig. 27.30).

On the basis of these considerations, there are many ways to scan a genome or to
analyze an individual gene to determine whether or not it has undergone LGT at some
point in the past. These methods all look for genes whose characteristics differ from
those of the “average” gene in the genome or that have anomalous phylogenetic trees.
However, such methods must be used with caution because a variety of other factors
can also cause regions of a genome to appear anomalous.

For example, one approach is to look for regions within a genome that have an un-
usual nucleotide composition compared to the rest of the genome. This screening
method works well for recent LGT events if the donor and recipient genomes possess
different nucleotide compositions. However, it will not detect transfers from species
with similar nucleotide compositions and may mistakenly identify regions under strong
selection as regions of lateral transfer. Another approach is to look for genes with highly
conserved sequences that have highly sporadic distribution patterns across species. Such
a sporadic distribution would be the expected result from gene transfer between dis-
tantly related taxa, but it could also be produced by gene loss from some lineages.

Phylogenetic analysis enables us to employ more discriminating criteria to identify
past LGT events. Here, we can capitalize on the fact that if genes were added to a
genome by LGT, phylogenetic analysis of those genes would yield trees different from
those obtained for the rest of the genome. Thus, we can search for genes whose phy-
logenetic trees differ from those of other genes in the genome or from the species tree.
This approach works best when we have an idea as to the possible source of the trans-
ferred genes and when the recipient and suspected donor genomes have markedly dif-
ferent phylogenies. Thus, it works relatively well to detect genes in the nuclear genome
of eukaryotes that were derived from an organelle genome. Usually, however, it is more
difficult to distinguish native genes from transferred genes because the gene donors
are not known and/or the donor and recipient lineages are more closely related. Using
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FIGURE 27.31. Organellar lateral gene transfer. Phylogenetic tree of the gnd (6-phosphogluconate
dehydrogenase) gene from bacteria, plants, selected eukaryotes, and various plastids. Note how
the plant nuclear and chloroplast-encoded genes group together, which is a reflection of gene trans-
fer from the chloroplast genome to the nuclear genome for those species in which the gene is
found in the nucleus. Note also how genes from plastids and plants all group with cyanobacteria,
which is a reflection of the cyanobacterial origin of plastids. (Redrawn from Nozaki H. et al. J.
Mol. Evol. 59: 103-113, Fig. 1,
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tails the following steps (Fig. 27.31).

1. Build trees for all genes in the eukaryote’s genome.

2. Look for genes that branch in evolutionary trees with o-proteobacteria (and thus

may be of mitochondrial origin) or cyanobacteria (plastid origin).

3. Apply tests such as bootstrapping to determine how well the gene trees represent

all of the underlying data.

(Red Algae*)
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It is important in these cases (and, in fact, in all cases) to ask the following ques-
tion: Could something other than LGT have caused the gene tree to differ from the
species tree? If so, what? One possible answer is long-branch attraction. If the suspect
gene experienced a higher rate of evolution than the average gene, it may be pulled
toward long branches in the tree. Another possibility is that the anomalous gene is a
member of a large gene family and not all of the genes in the tree are orthologs. If the
tree includes a mixing of different paralogs, rather than only orthologs, the tree may
be topologically different from the species tree. As a result, it is not sufficient simply
to find differences between a gene tree and the species tree; the anomalous gene tree
must be robust.

Phylogenetic Analysis Can Detect Recombination

Another evolutionary force that leads to different histories for different regions within
a genome is recombination. Although recombination can be detected using standard
population genetic approaches (e.g., following polymorphisms, generating linkage
maps, and analyzing pedigrees), there are some situations where phylogenetic analysis
can also play a useful role.

Consider a relatively simple case of recombination in bacteria. Suppose that two
strains—strain 1 and strain 2—of bacteria differ by a variety of single-nucleotide poly-
morphisms (SNPs) scattered throughout their genomes. These two bacteria conjugate
(see Chapter 12), and a 200-kbp section of the genome of strain 1 replaces the equiv-
alent 200-kbp section of strain 2, thus generating strain 3. As a result, all of the genome
of strain 3 is derived from strain 2, except for the 200-kbp segment from strain 1. With
the passage of time and continued reproduction, all three strains diverge from each
other slightly. If the entire genome of each of these strains is then sequenced, the his-
tory of the conjugational recombination event could be detected in a variety of ways.
For example, phylogenetic trees could be built for all genes in the genome, including
all three strains in the tree. Rooting the trees using an outgroup would show that genes
in the region outside the 200-kbp recombination zone would produce a pattern with
strains 2 and 3 grouped together to the exclusion of strain 1. Inside the 200-kbp re-
gion, strain 3 would group with strain 1, not with strain 2. Thus, in essence, methods
very similar to those described above for detecting LGT could be used. This approach
can also detect hybridization events between eukaryotic species. A simplified example
of using phylogeny to detect recombination is shown in Figure 27.32.

An alternative strategy would be to compare the consistency indices for different
regions of the genome. Here, first generate a baseline tree, often by using a combina-
tion of all the data. Next, align all of the genes in the genome (or align the complete
genomes including even noncoding regions). Each column in the alignments is then

TAGCTA , ATCA
AAGCTA| GTCA
AATGTTIGTCA
AATGTT TACG

FIGURE 27.32. Phylogenetic analysis can be used to detect recombination. One way to do this
is to compare the phylogenetic trees for two portions of an alignment (the left and the right). This
type of analysis can be done for all possible recombination points between the left and right por-
tions of the alignment. If a recombination event has occurred, then the trees for the two partitions
should be different. An example is shown in the figure. See Fig. 13.14 for an example of how re-
combination is suggested by the genealogy of Adh. (Redrawn from Minin V.N. Genetics 175:
1773-1785, Fig. 1, © 2007 Genetics Society of America.)
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assigned a consistency index score. Those regions of the genome that have markedly
different histories due to recombination events would show up as runs of high con-
sistency index scores.

Gene Function Can Be Predicted from Gene Trees

In the early days of gene sequencing, the choice of material to be sequenced was usu-
ally made on the basis of gene function, such as when seeking to characterize the ge-
netic basis of a mutant phenotype or a particular protein. Today, most sequence data
are generated irrespective of gene function. Granted, experimental studies are required
to identify the functions of a gene conclusively; nevertheless, the prediction of gene
function has become a fruitful aspect of large-scale sequencing projects. Most such
predictions rely on some form of database search to identify homologs of the unknown
gene (i.e., the query gene [see Box 27.1]). If a homolog is found whose function is
known, then the query gene can generally be predicted to share the same function. Al-
though this approach can work, it has limitations.

For example, in many cases, such a database search will yield dozens, hundreds, or
even thousands of homologs that represent many different functions. How does one then
choose which of those functions to assign to the uncharacterized query gene? Frequently,
the gene whose sequence most closely matches that of the query gene is located and its
function adopted. This is a straightforward approach, but it can give wrong answers due
to an issue we raised previously: Rates of evolution vary between taxa and thus meas-
ures of DNA sequence similarity are not reliable measures of evolutionary relatedness.
To illustrate this possibility, look at gene o in species 3 in Figure 27.33. This gene is a
member of a gene family with two paralogous subfamilies, o and [3, derived from a du-
plication that occurred in the last common ancestor of all three species. Suppose further
that, as commonly occurs, o. and B diverged in function such that all three o genes
(which are orthologs of each other) have the “blue” function and all three orthologs of
B have the “red” function. If species 3 had a slower rate of evolution than other species
in the tree (as shown in Fig. 27.33) and a database search was performed using gene o
from species 3 as the query gene, then gene 3 from species 3 would be identified as the
best match, even though it is a paralog of o and has a different function.

These difficulties can be overcome by using phylogenetic reconstructions to assist
with the functional predictions as detailed in Figure 27.34. Ancestral states along the
tree can be inferred as well as a possible state for any uncharacterized genes in the tree.

Species 2 FIGURE 27.33. Sequence similarity does not
200 2B always accurately represent relatedness. In this
on hypothetical tree, the evolution of three
species is indicated by thick light blue bars
and the evolution of specific genes is indicated
by thin red and blue lines within the bars. An
early gene duplication gave rise to the o and
B genes; thus all of the o genes are paralogs
of the B genes. Over time, the o and B genes
diverged such that their functions now differ
Species 3 (indicated by red and blue). The multiple forms
300 3P of the o genes arose through speciation events,
o n and thus all are orthologs of each other (and
likewise for all the B genes). If species 3 had
a slower rate of evolution than the other two,
then the o and B paralogs within species 3 will
be more similar to each other (as measured by
summing the branch lengths connecting them)
than either is to their orthologs in other
species. (Redrawn from Eisen J.A. Genome
Res. 8: 163167, Table 4, © 1998 CSHLP)

Species 1
Too 1B

<“«— Duplication
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: «<— Duplication?

7<— Duplication?

Species 1 Species 2 Species 3
1o 1B 20.2B 3003
o n on o n

<«—Duplication

A 4
Overlay known
functions onto tree

Y

Infer likely function
of gene(s) of interest

Actual evolution
(assumed to be unknown)

Example A Method Example B
20 Choose gene(s) of interest 5
3o . l , 134
1o 200 1[3325 Identify homologs 6 5
e— Align sequences e—
lo 20 30 1B 2B 3B 12 3 4 5 6
\ 4
Calculate gene tree
<«— Duplication?
Tl 20 300 1B 2B 3B 1 23 4 5 6
° ° [ I | ° [ ] [

FIGURE 27.34. Phylogenomics-based prediction of gene function. The figure illustrates the process
for two examples: (1) Choose the gene of interest; (2) identify homologs; (3) build a multiple se-
quence alignment for the homologs; (4) calculate a gene tree representing all the homologs; (5)
overlay that function onto the tree when a gene’s function is known; (6) use character state re-
construction methods to infer the functions of uncharacterized genes. The bottom panel shows the
actual evolutionary history for each example. (Modified from Eisen J.A. Genome Res. 8: 163-167,

Fig. 1, © 1998 CSHLP,)
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Either parsimony character state reconstruction methods or likelihood approaches can
be used, and the results have generally provided more accurate predictions of gene
function than those based on simple database searches. This approach is known as
phylogenomics, so named because it integrates evolutionary analysis with genome se-
quence analysis. With these tools, we can infer relatedness, rather than having to rely
on similarity.

Correlated Substitutions Can Be Used to Solve RNA Structures

rRNA molecules form complicated secondary structures, often with the molecule fold-
ing back on itself to form stem sections that are regions of a double-stranded helix
stabilized by intramolecular base pairing. The techniques most often used to resolve
macromolecular structures, such as crystallography and nuclear magnetic resonance
(NMR), encounter difficulties when used to analyze rRNA structures. This limitation
can be circumvented for the most part by using the process of evolutionary analysis
outlined in the following steps to generate models for the secondary structure of RNAs
(see also Aim and Scope and pp. 544-545).

1. Collect sequences of RNAs that are thought to form the same or similar struc-
tures. Ideally, select sequences with sufficient relatedness so that they can be
aligned at the primary sequence level.

2. Generate a multiple sequence alignment of the RNA sequences.
3. Build a phylogenetic tree of the RNAs.

4. Using a character state reconstruction method, infer when particular changes oc-
curred and map them onto the branches on this tree.

5. Look for branches for which multiple alignment columns have undergone
changes, i.e., molecular regions where several sequence positions have been altered.

6. Search within those regions for cases where the same two columns changed in
multiple branches more frequently than one would predict based on chance alone.
These correlated changes suggest a possible interaction between the columns in
each pair. One such interaction that would have significant impact on the sec-
ondary structure would be hydrogen bonding between those nucleotides so as to
stabilize a local double-stranded stem structure.

7. Build a model of the secondary structure that takes those pairs of interacting align-
ment columns into account, such that the maximum number of those pairs are

joined by hydrogen bonds.

Relative Rate Test and Molecular Clocks

As discussed above, the rate of evolution is not uniform in different lineages (e.g., see
pp. 533-535). A simple metric known as the relative rate test can demonstrate this.
Consider a tree of three species (Fig. 27.35) where the branch lengths represent the
amount of divergence (this could be based on a parsimony, likelihood, or distance cal-
culation). Suppose one wanted to know whether the rate of evolution was uniform in
the lineages of species 2 and species 1 because they shared a common ancestor (node
0) (i.e., if do; = do,). Because one usually does not have data on ancestral nodes, an-
swering this question might seem challenging. However, species 3 can be used as the
test bed for this in the following manner:

diz=dor +dor +drs, (6)
dyy=dor +dog + dgs. (7)
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1 2 3

FIGURE 27.35. A phylogenetic tree of three species (1, 2, 3) and the ancestral nodes for common
ancestors of 1 and 2 (node O) and all three (node R). The time since the existence of the nodes
O and R is labeled t and T, respectively. (Redrawn from Gu X. and Li W-H. Proc. Natl. Acad. Sci.
95: 5899-5905, Fig. 2, © 1998 National Academy of Sciences, USA.)

These can be rearranged to

doy = dor + dgs — dy3, (8)
doy = dor + drs — das. 9)

If do; = do», then do, — do, should equal 0.
One can then combine Equations 8 and 9:

doy — doy = dog + dps — di3 — (dor + drs — da3),
doy — dop = dys — dys.

Thus, if do; = do,, then d,3 must equal d;3. Because we can measure d,; and d,3, we
can now test for whether dy, = dp,.

By doing this type of relative rate test, we can determine whether evolutionary rates
varied for a particular dataset. If the rates have been relatively uniform, then the rates
are treated as a “clock” to estimate dates of divergences on a tree. When using molec-
ular data, this is known as a “molecular clock.”

A key aspect of using a molecular clock is that the rates of change can be calculated
from a tree. Consider the tree shown in Figure 27.35. We can label the occurrence of
the two ancestral nodes O and R as t and T, respectively. Suppose we know t. Can we
use this to calculate T? If the rates of change are uniform (as could be indicated by a
relative rate test), a very simple calculation can be performed to estimate T.

First, we need a way to convert distances to time. Under the assumption that rates of
change are uniform, the length of time that has elapsed for a particular branch can be rep-
resented as d = Z X time, where d is the branch length and Z is a conversion factor.

If we are given t from the figure, then we can calculate Z from the distance be-
tween 1 and 2:

d12 X Z = Zt
(the factor of 2 comes from the two branches each representing ¢ units of time). Then,
Z = Zt/dlz.

With this Z we can then calculate any times on the tree. For example, because d;; X Z
= 2T,

T:d13XZXO.5.
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Using this general process, one could calculate the time of occurrence for all nodes
in a tree. However, in reality, making such estimates of divergence are not this straight-
forward. For example, rates of evolution are rarely if ever completely uniform. Thus
there is no single “Z” conversion factor for any one tree. Second, our “known” dates
that we would use to calibrate “Z” usually have a significant amount of error associ-
ated with them, and thus each estimate of time based on such known dates would
need to be considered with error bars. Third, most of the “known” dates are for nodes
on offshoot branches from a tree (i.e., in lineages that became extinct), rather than
specific ancestral nodes for taxa under consideration. Thus, one must first extrapolate
back from these branches to ancestral nodes and then use these extrapolated points
for additional inferences. These and other challenges mean that data estimates from
trees frequently have significant margins of error associated with them.

Phylogenetic Contrasts Can Correct for Shared History Bias

The benefit of using phylogeny in solving the rRNA structure is that it allows corre-
lations across sites within the molecule to be identified more carefully. When one sim-
ply looks at a multiple sequence alignment without using any information on phy-
logeny, many true correlations are missed and many false ones are found. The
inaccurate identification of correlations in the underlying data occurs because each se-
quence is not independent of the other sequences. They are related to each other by a
history. Those sequences that are closely related share certain patterns (such as par-
ticular nucleotides in the rRNA alignment) due to their shared history. If this shared
history is ignored, the correlations involving these sequences will be overcounted. The
concept here is similar to that of the relative rate test described above. The distance
between species 1 and 3 is not independent of that between 2 and 3 because some of
the distance is on the same branch connecting O and 3.

This turns out to be a general problem in comparative biology. Correlations can
be identified across multiple taxa or traits, but if the underlying phylogenetic tree is
not accounted for, some true correlations will be missed and some spurious correla-
tions will arise (see Fig. 27.36).

It is possible to correct for this bias by removing the correlation that is due to
shared history of organisms and examining the residual correlation. The general
method for doing this is phylogenetic contrasts. To carry out this method, two key
pieces of information are needed: character traits for a set of OTUs (e.g., species or
genes) and a phylogenetic tree showing the relationships among these OTUs with
branch lengths. This information is then used to calculate “contrasts,” which are meas-
ures of the differences in the traits between the two OTUs in the tree. These contrasts
are a way of calculating changes in traits along branches, which in turn can be used
to examine how when one trait changes, other traits change. Figure 27.36 provides
more detail on this method. Also see Figures 20.12 and 20.24.
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FIGURE 27.36. (A) Home range areas of 49 species of mammals in relation to their body size.
Larger-bodied species tend to have larger home ranges. (B) When the phylogeny of the organisms
is included in the analysis, it becomes clear that there are stronger positive correlations within
each group (carnivores and ungulates) than when considered all together. The method of phylo-
genetic contrasts attempts to calculate correlations between variables in which phylogeny of the
organisms is considered. It does this by calculating how the variables change along a tree of the
organisms and then examining what the correlations are in the patterns of change (e.g., if as body
size increases, does home range increase). (O) A hypothetical tree showing five of the species in
A and B. (D) Calculating contrasts for the tree in C for variable X (e.g., body mass). First, the val-
ues for variable X are overlaid onto the tips of the tree (X; — X5) for each species. Then contrasts
are calculated for this variable along the tree. For example X; — X, is a contrast for the clade of
species 1 and 2. X3 — X is the contrast for species 3 versus the ancestor of species 1 and 2. Xg
represents an inferred character state for the variable X for this ancestor. All other contrasts are cal-
culated for the tree (e.g., X4 — X5). Then the contrasts are calculated for another variable Y (e.g.,
home range). The corresponding contrasts are then compared (e.g., X; — X, vs. Y; — Y,) to each
other, allowing one to determine if there are relationships in how these variables change along the
tree. (A, Modified from Garland T. Jr. et al. Syst. Biol. 42: 265-292, Fig. 2, © 1993 American In-
stitute of Biological Sciences. B, Redrawn from Garland T. Jr. et al. Syst. Biol. 42: 265-292, Fig.
2, © 1993 American Institute of Biological Sciences. C, Modified from McPeek M.A. Am. Natu-
ralist 145: 686-703, Fig 1 © 1995 University of Chicago Press. D, Redrawn from McPeek M.A.
Am. Naturalist 145: 686-703, Fig. 1, © 1995 University of Chicago Press.)
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This chapter has discussed how phylogenetic trees are in-
ferred emphasizing molecular sequence data as a model
system. Methods for phylogenetic reconstruction, as well
as how to evaluate the methods and also various uses of
the trees they generate, were described. Molecular se-
quences were chosen as a model system because trees

based on sequence data are becoming ever more com-
mon and ever more powerful. However, trees based on
other character traits are also useful. The same methods
and issues that have been described in this chapter apply
to trees based on morphology, behavior, or any other
trait.
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