
Developmental Biology 310 (2007) 187–195
www.elsevier.com/developmentalbiology
Review

The regulatory genome and the computer

Sorin Istrail a, Smadar Ben-Tabou De-Leon b, Eric H. Davidson b,⁎

a Center for Computational Molecular Biology and Department of Computer Science, Brown University,
115 Waterman Street, Box 1910, Providence, RI 02912, USA

b Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA

Received for publication 10 May 2007; revised 31 July 2007; accepted 4 August 2007
Available online 10 August 2007
Abstract

The definitive feature of the many thousand cis-regulatory control modules in an animal genome is their information processing capability.
These modules are “wired” together in large networks that control major processes such as development; they constitute “genomic computers.”
Each control module receives multiple inputs in the form of the incident transcription factors which bind to them. The functions they execute upon
these inputs can be reduced to basic AND, OR and NOT logic functions, which are also the unit logic functions of electronic computers. Here we
consider the operating principles of the genomic computer, the product of evolution, in comparison to those of electronic computers. For example,
in the genomic computer intra-machine communication occurs by means of diffusion (of transcription factors), while in electronic computers it
occurs by electron transit along pre-organized wires. There follow fundamental differences in design principle in respect to the meaning of time,
speed, multiplicity of processors, memory, robustness of computation and hardware and software. The genomic computer controls spatial gene
expression in the development of the body plan, and its appearance in remote evolutionary time must be considered to have been a founding
requirement for animal grade life.
© 2007 Elsevier Inc. All rights reserved.
Keywords: Regulatory information processing; Gene regulatory networks; Biological logic computations
Introduction

The genomic regulatory code that controls animal develop-
ment is resident in the sequences of the several hundred
thousand cis-regulatory modules (CRMs) that the genomes of
animals such as us contain. Regulatory functions of the control
modules are genetically hardwired since their target site
sequences determine the identities of the particular transcrip-
tion factor inputs to which they respond. In development the
most important cis-regulatory modules are those controlling
(that is, turning on or off) expression of genes encoding
transcription factors since it is these molecules which cause or
prevent expression of all genes, i.e., other regulatory genes,
signaling genes, differentiation genes and morphogenesis
genes. Individual transcription factors are expressed in cell
type specific, and temporally specific ways, and the ensemble
of transcription factors that defines the regulatory state of each
⁎ Corresponding author. Fax: +1 626 793 3047.
E-mail address: davidson@caltech.edu (E.H. Davidson).

0012-1606/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.ydbio.2007.08.009
cell type differs from that of any other cell type and specifies its
functional possibilities (1).

The essential functional character of developmentally active
CRMs is that they execute information processing of their
multiple inputs. That is, they generate new functional outputs by
combining these inputs to produce switches, gates or quanti-
tative activity controllers. Their regulatory outputs, the
“instructions” they transmit to the basal transcription apparatus
of the gene they control, are always the result of processing their
several inputs so that it is usually impossible to predict from any
one input how the regulatory system will behave. However, the
actual instantaneous regulatory function of a CRM is not a
constant of its structure: it depends on the current regulatory
states to which it is exposed at each given time and place in the
developmental history of the organism. Thus CRMs are the
conditional information processing elements of the overall
genomic computational system.

Information processing in development occurs at the next
level of regulatory organization as well, that is, at the level of the
networks of CRMs and regulatory genes that do the biological

mailto:davidson@caltech.edu
http://dx.doi.org/10.1016/j.ydbio.2007.08.009


188 S. Istrail et al. / Developmental Biology 310 (2007) 187–195
“jobs” of development, such as specification of territorial fate,
interpretation of signals, installation of self-limiting or periodic
functions, and so forth. Development is intrinsically a process of
change in regulatory state in space and time, every step of which
devolves from and involves regulatory information processing;
the very condition for the existence of development is the
genomically encoded information processing system.

The comprehensive analysis of the logic functions of cis-
regulatory modules on the one hand (see for example, Yuh et al.,
2001, 2004, 2005) and of the topology of gene regulatory
networks on the other hand (Davidson, 2006) brings us to the
era where we can examine the intrinsic nature of the genomic
information processing system. Gene regulatory networks
display the exact interactions among regulatory and signaling
genes which are responsible for establishing the regulatory state
in each cell type, at the developmental times to which the
networks pertain. Thus they provide us with exact pathways of
causality between the A's, C's, G's and T's of the static
regulatory genome and the generation of novel regulatory states
as development progresses. These pathways all include cis-
regulatory and network information processing, which can be
considered as computational logic operations. The genomic
computer has been assembled step-wise during evolution and in
any given modern animal is a complex of older and more
recently altered regulatory structures (Davidson and Erwin,
2006). It is illuminating to consider the biological computa-
tional machine in the terms usually applied to manmade
computation devices. Here we first examine briefly the nature of
some basic information processing functions that both our
computers and the genomic computer carry out and then
compare diverse aspects of the means of computation.

Fundamentals of information processing

We begin with elementary logic functions which CRMs
execute and which computers also execute. A CRM can be
decomposed into elementary subcomponents each of which
carries out some specific basic function, and many cis-
regulatory functions can be reduced to Boolean truth tables
(Istrail and Davidson, 2005). A CRM is thus a conditional
information processing device that can be compared to a typical
computer circuit. Among the elementary CRM subcomponents
are those which execute the basic logic functions. A common
and basic example is the AND function. If a part of a CRM has
sites for two transcription factors, and its output is conditional
on both being present, then this part of the CRM in fact
operates as an “AND” gate: it performs the logical operation of
“conjunction” since it responds only when both of its inputs are
active. This condition might obtain where two non-coincident
spatial domains of transcription factor expression overlap or
when a temporal and a spatial domains overlap (for many
examples see Davidson, 2006; Istrail and Davidson, 2005). For
instance several Drosophila CRM that respond both to
anterior/posterior stripes of gene expression and to dorsal/
ventral transcriptional cues and operate where they intersect are
of this class (op. cit.). The consequence is definition of new
spatial subdomains. If on the other hand a part of a CRM
requires for activity that at least one of two inputs be present,
then it acts as an “OR” gate; that is, it performs the logical
operation of “disjunction” since it responds to some extent
when either of its two inputs is present. In development many
OR gates function additively in that the output is the sum of the
two inputs, but either one suffices for some activity. These
gates are very commonly seen in differentiation genes where
diverse transcriptional drivers each contribute to the output
level of expression, as for instance in muscle contractile genes
or pancreatic endocrine genes (op. cit.). AND and OR are two
of the basic operations of mathematical logic. The third basic
logic operation is the negation, “NOT,” which acts as a switch:
when the repressor is present and the input is therefore “on,” it
outputs “off,” transcriptional silence, and vice versa: when the
input is “off” it outputs “on.” This formalization applies to
CRM functions that include active transcriptional repressors as
inputs. These three logic operations are universal: all other
logical operations, viewed as mathematical functions, can be
obtained by suitable combinations of AND, OR and NOT, a
principle adapted to computational devices by von Neumann
(1958).

Fig. 1 describes several elemental logic computations in the
different languages of electronics, logics, cis-regulatory func-
tion and biochemical assembly. These four representations of
the AND logic operation are given in Fig. 1, Part 1. The
electronic diagram is represented on the left, i.e., the customary
diagram of an AND gate in electronic computers. A Boolean
truth table of the AND function is shown next to it. It has two
inputs (I) represented in the first two columns, and the third is
the output column; each row shows the output value for the
corresponding values of the inputs. A CRM diagram of such an
AND logic processor is then presented: it has two transcription
factor inputs binding to the CRM, and the output is active only
when both inputs are present; otherwise the output is just
“background.” A biochemical way of looking at the same
processor is shown in the diagrams on the right. First is a
“device” part, which is a physical representation of how such an
AND operator might work in a CRM. In this particular case the
biochemical reason for this mode of function is that the cofactor
which actually activates the basal transcription apparatus
requires both DNA-binding transcription factors to be present
in order for it to bind in the CRM. Of course, the same input–
output behavior might be implemented with various different
biochemistries. Possible outputs of a cis-regulatory AND
processor are shown in two ways: as a spatial specification of
expression only where two non-coincident inputs overlap (as
above); second, as a quantitatively measured output, as would
be seen in a graphical representation of expression measure-
ments in which removal of either input decreases output to
background (for a real life example, see Yuh et al., 2002).

In Part 2 of Fig. 1 we present four equivalent representations
of an additive OR logic operation. Electronic and mathematical
logic diagrams are given on the left followed by the CRM
diagram for such an OR logic function, indicating two
transcription factors binding to the CRM. There is an output
when either of these inputs is present (valued at “1” in the table),
additive when both are present (valued at “2” in the table). The



Fig. 1. Basic logic operations executed by computers and cis-regulatory modules. Part 1, AND logic; Part 2, OR logic; Part 3, NOT logic; Part 4, compound logic. See
text for explanation and discussion.

189S. Istrail et al. / Developmental Biology 310 (2007) 187–195
“device” part of the diagram at the right provides a physical
representation of how such an OR device might work in a CRM:
here, as symbolized by the curved arrows, one of the factors
stimulates transcription by activating an element of the basal
transcription apparatus, the other by affecting chromatin state
(e.g., see Stathopoulos and Levine, 2002). The “measured
output” might appear as shown on the right; compare the AND
processor in Part 1.

In Part 3 of Fig. 1 are equivalent representations of a NOT
logic operation, the customary diagram for NOT processors in
electronic computers on the left, followed by the mathematical
logic table of the NOT function. In gene regulation this is the
function of transcriptional repressors, which act as NOT
operators: when repressors are present, output is absent; when
repressors are absent output is not absent. In Part 4 is shown a
CRM function which is a combination of a NOT processor and
an activating input; as shown in an earlier study (Istrail and
Davidson, 2005), CRMs in general execute compound opera-
tions, which are composed of multiple logic operations. The
case considered in Fig. 1, Part 4 is commonly observed in
signal-mediated transcriptional control. In a cell receiving the
signal an “effector” transcription factor transduces the signal
and acts as a gate, allowing a positively acting transcription
factor binding in the same CRM (driver) to turn on the basic



190 S. Istrail et al. / Developmental Biology 310 (2007) 187–195
transcriptional apparatus. But in a cell not receiving the signal,
the same effector is an obligate, dominant repressor. The signal
response system thus acts as a toggle switch (Barolo and
Posakony, 2002; Istrail and Davidson, 2005). On the left we
deconstruct this type of response element and show that it
includes a NOT logic operator (black box).

This view of CRM as a combination of multiple logical gates
defines what we mean in stating that CRMs function as
information processing devices. Gene regulatory networks
consist of assemblies of CRMs and the regulatory and other
genes they control. Since such networks are assemblies of
primary information processing devices, their operation can be
compared to that of manmade computing machines. In
principle, the genomic computers that control development
could carry out all computations because they execute
combinations of AND, OR and NOT computations.

Properties of the genomic computational system

Considering the genome as a whole and the complete life
cycle, the developmental information processing complexity
of the genomic computer can be crudely approximated as
follows. We take the sum total of the regulatory linkages in
all the gene networks which control cell function, integrating
over the whole life cycle and all cell types which arise
therein, multiplied by the number of cells per type. For each
cell type there are at least 104 genes that must be regulated. If
there are 1012 cells in a human, there are 1016 regulatory
performances required on cis-regulatory modules that on the
average each may utilize 4–8 diverse inputs. It is interesting
to consider the design principles of this enormous device,
with reference to those of the large computers that we
ourselves build.

Diffusion vs. wires: the electronic computer and the
regulatory genome

In the genomic computer processors of any given gene
regulatory networks are linked by diffusion. Here is one of the
most profound differences between the electronic computer and
the genomic regulatory system. Compared to the one way,
directed transfer of information in metal wires, diffusion of
transcription factors is slow and probabilistic, and its rate is
dependent on concentration, temperature, shape and mass. A
typical rate constant for transcription factor diffusion is
∼100 μm2/s, orders of magnitude slower than the rate of transit
of electrons in a metallic conductor. Successful transcription
factor interactions with their target site sequences depend on
stereochemical intercalation into the DNA double helix and
formation of chemical bonds between the protein side chains and
bases in the target site DNA. But this occurs only after
probabilistic tests of many alternative possibilities as the factor
diffuses along the DNA molecule, not on pre-wired linkages. In
computer science the least efficient, “brute force” programs are
those that do all possible combinations and ex post facto select
what gives the desired answer. But in that diffusion is a random
walk process, it has exactly this property. Nonetheless there are
no systems more fail-safe than the developmental systems that
operate by means of diffusion: the “safety net” in animal cell
nuclei devolves from the large number of transcription factor
molecules of each molecular species in a relatively small
volume, and from virtual insensitivity to the exact time it takes
for any one of these molecules to dock at its target cis-regulatory
sequence.

Time and synchrony: the electronic computer and the
regulatory genome

The basic design principle of electronic computers is the
synchronization of every elementary operation to a single
pulsing clock. This clock operates at very high rates, and the
efficacy of the computer depends on its precision. This principle
is entirely irrelevant to the genomic information processing
system. The genomic computer has no rigid temporal synchrony,
in that it consists of a large number of independent cis-regulatory
information processors, each with its own temporal relations
which depend on dynamics of input (change in transcription
factor concentration with time) and output (rates of RNA
production). The Draconian requirements for exact synchrony in
electronic computers, and their failure to operate if deviations
occur, are not properties of living regulatory systems, nor,
obviously, could they be. The genomic regulatory system is, in
contrast, tolerant of temporal variation and local asynchronies.
Causal coordination between different networks and network
elements replaces imposed temporal synchrony: if given genes
turn on, in consequence their target genes presently turn on (or
off, if a transcriptional repressor is among the given genes). That
is, in each cell at any given time, the current regulatory state and
the signaling cues are processed to produce the next regulatory
state. A relaxed form of synchrony between the different embryo
domains and also between the cells of the same domain is
achieved by signaling, again a diffusion mediated process, at
both inter- and intra-cellular levels. In marine embryos, for
example, the whole process works perfectly well at different
rates over a range of ambient temperatures.

The complexity of development requires an enormous
number of information processing steps as regulatory states
are established in every cell over time and space. In electronic
computers the requirement of large computations is met by
increasing speed. This is done in many ways: parallel
processing, advanced software and faster basic clocks. None
of these strategies for increasing computational power by
increasing speed have been deployed during evolution in
answer to the need for large gene regulatory computations. In
contrast, genomic computational systems have evolved that
deploy very large numbers of slowly working information
processing modules and that arrange them in shifting sets of
subcircuits.

Multiplicity of processors: the electronic computer and the
regulatory genome

Ordinary desktop electronic computers have one or two
processors and ordinary parallel computers may have up to a few



191S. Istrail et al. / Developmental Biology 310 (2007) 187–195
thousand. The basic limitation in the number of independent
processors in such computers derives from the difficulties of
synchronization in fixed communication architecture. The
“mean time failure,” the interval between successive failures,
decreases with the number of processors (Hennessy and
Patterson, 2003). In contrast, the genomic computation
apparatus includes at least several hundred thousand small
independent processors (i.e., the number of CRMs in a typical
animal genome; Davidson, 2006). Perhaps 104 of these are
directly and indirectly linked together functionally in a given cell
at any given time, if we take this as a rough estimate of the
number of genes in a typical genome, each of which is regulated
either positively or negatively, by CRMs.

The large number of processors operative at any one time in
the genomic computer illuminates one of the major payoffs of a
temporally tolerant system of intra-machine communication
that runs on diffusion, rather than on communication through
inflexibly designed wires. Fixed communication architecture
limits not only the number of independent processors that can
be effectively coordinated and programmed, but also the variety
of modes of operation. The changeable architecture and
temporal freedom of the genomic regulatory system in principle
allow a large and flexible number of processors and a great
variety in modes of problem solving. Evolutionary change in
the animal body plan occurs by alterations in the gene
regulatory networks that control its development. The flexibility
of these networks in respect to computational design thus
fundamentally underlies the processes leading to evolutionary
change in major aspects of morphology.

Distributed or parallel computer clusters utilize asynchro-
nous processors, and they share this design principle with
genomic regulatory systems. However, they require a dense and
tightly regulated traffic of messages passing between processors
along the fixed matrix of channels. In contrast, in genomic
regulatory networks the “communication channels” are for-
mulated on an instantaneous need basis as the developmental
computation proceeds: if a subcircuit of regulatory genes causes
the regional activation of other regulatory genes in given cells,
the products of these genes will find their downstream targets in
the genome, thus creating a new subcircuit in those cells. The
active genomic computer continually redesigns itself during
development, within the range of the hard-wired template of
potentialities resident in the DNA sequence.

Memory: the electronic computer and the regulatory
genome

Electronic computers are equipped with various forms of
memory, but most are passive in that information is stored and
remains there in the absence of further computation, until it is
erased or overwritten. DRAM (dynamic random access
memory) does require periodic refreshment of charge, but this
is essentially only to preclude gradual loss of information by
charge leakage. The genomic regulatory system also utilizes
various forms of passive memory. The major passive mechan-
isms result in installation of chromatin states which “lock
down” conditions of activity or inactivity that were initially
mandated by CRM interactions, but which are retained long
after the relevant transcription factors have disappeared from
the system. Among phenomena of this type are histone
acetylation and deacetylation, histone methylation, DNA
methylation, installation of polycomb or trithorax group
complexes (see Davidson, 2006 for review). As is also true of
the memories of electronic computers, the information storage
i.e., of a state of gene expression, is initially put in place by a
computational interaction (on a CRM), and it can also be erased,
by restoration of the initial state. However, a basic difference
between the passive memories of electronic and genomic
computers is that any place in the genome may be utilized for
installation of a state of memory, while in electronic computers
information is stored only in a priori dedicated, rigidly defined
subdomains of the machine.

The genomic regulatory system utilizes another, extremely
important kind of memory altogether. This is a dynamic or
active rather than passive memory, in which transcriptional
subcircuits maintain given regulatory states, as directed by
inputs to continuously functional CRMs. Intra-cellular positive
feedback subcircuits linking regulatory genes are an example
(Fig. 2A). Once they are set up they force continuing trans-
criptional expression of the participant regulatory genes and
thus of all genes which are downstream targets of these
regulatory genes. Hence the regulatory state generated by the
locked in set of regulatory genes is “remembered,” that is, it
continues to be presented. A second very common kind
of active, transcriptionally driven memory subcircuit is the
“community effect” (Fig. 2B) (Gurdon, 1988; Davidson, 2006).
Here all cells of a territory signal to one another mutually, and
this signaling is essential to maintenance (memory) of the
territorial regulatory state. The mechanism is that in each cell
the CRM of the gene encoding the signal ligand responds to the
transcriptional effector of the same signal from the adjacent cell.
This produces an intercellular positive feedback circuit. The
unique feature is thus essentially the use of actively driven
memory of state produced by inter- and intra-cellular transcrip-
tional feedback subcircuits, a feature that is almost universally
found in those gene regulatory networks so far analyzed
(Davidson, 2006).

In the electronic computer the central processing unit (CPU)
and the working memory used for computation are separate
parts of the device. They are connected by hard wires. Due to
the separation of the CPU and memory, all data and operations
that need to be performed must travel from the memory to the
CPU or between CPU and memory. This gives rise to what is
called the “von Neumann bottleneck” (von Neumann, 1945).
Wrote Backus, “Surely there must be a less primitive way of
making big changes in the store than by pushing vast numbers
of words through the von Neumann bottleneck …much of that
traffic concerns not significant data itself but where to find it.”
(Backus, 1978). But such bottlenecks are irrelevant to the
genomic computer, in which the cis-regulatory information
processing nodes may be an intrinsic part of the dynamic
memory circuitry. In the genomic computer, when passive
memory is employed it does not directly provide input into the
nodes where information processing is taking place; passive



Fig. 2. Properties of the genomic computational system, dynamic memory and robustness. (A) An example of an intra-cellular positive feedback subcircuit. Gene A
product auto-activates its own cis-regulatory element and also activates gene B expression. Gene B product feeds back to provide a necessary input into gene A cis-
regulatory element. (B) Intercellular positive feedback circuit, a community effect. A ligand is secreted and activates a signaling pathway in the neighboring cell, which
has a direct activating input into the ligand cis-regulatory element. Thus, all the neighboring cells in this territory signal to one another so the cells are locked in a specific
regulatory state. (C) Exclusion of alternative fate by repression. One of the key specification genes of domain A represses a key specification gene of domain B, and vice
versa. This mutual exclusion prevents specification state ambiguity that could result from an erroneous activation of both genes in the same territory. (D) Feed forward
loop. Gene A activates the expression of gene B and together they activate the expression of gene C. (E) This synthetic network describes the specification of two
neighboring domains in the embryo, A and B, as illustrated in the embryo diagram on the upper panel. The cis-regulatory element of “local repressor” (light blue line)
responds to a maternally localized input so that local repressor is expressed only in domain A. Local repressor represses an otherwise ubiquitous repressor, “global
repressor (gray line),” that keeps all the genes of domain A subcircuit off except from the cells where local repressor is expressed. Transcription factor A1 turns on in
domain A due to local repressor activity and a ubiquitous activator. Transcription factor A1 provides a positive input into the cis-regulatory elements of two other targets
of global repressor, transcription factors A2 andA3. Transcription factor A2 input is also necessary for the activation of transcription factor A3, so the three genes A1, A2
andA3 form a feed forward loop. Transcription factors A2 andA3 form a positive feedback loop that locks domainA in this regulatory state. The three genes, A1, A2 and
A3, activate the expression of a differentiation gene battery that is specific to domain A. Another target gene of global repressor is ligand, a signaling molecule that is
transcriptionally activated in domainA. Reception of ligand by the neighboring tier of cells activates the transcription factor B1 there. Transcription factor B1 locks itself
on to fix domain B specification state and also activates domain B differentiation gene battery. In order to exclude alternative fate, transcription factor B1 represses the
expression of transcription factor A2 in domain B and transcription factor A2 represses the expression of transcription factor B1 in domain A.

192 S. Istrail et al. / Developmental Biology 310 (2007) 187–195



193S. Istrail et al. / Developmental Biology 310 (2007) 187–195
memory devices are downstream of the cis-regulatory responses
to transcriptional inputs.

Robustness: the electronic computer and the regulatory
genome

Robustness, the quality of being “strongly built” (Webster's
English dictionary) is an urgent requirement because this quality
is inversely related to the failure rate. Here we consider the kinds
of strategies by which failure is minimized in genomic
regulatory systems, compared to those of electronic computa-
tional systems. In electronic computers hardware solutions
include features such as majority gates, that is, engagement of
several identical copies of the same circuit with selection of the
majority output; and inbuilt error detection circuits that check for
glitches after the fact, e.g., by monitoring conservation of bit
number in the results of a computation. Software may also
incorporate many different strategies for diagnosis of error cause
and location.

The possibility of failure is minimized in a completely
different way in the genomic regulatory systems that control
animal development (to which these considerations are
confined): essentially, they utilize multiple design devices to
doubly and triply ensure every regulatory state they set up. One
strategy is use of diverse kinds of subcircuit which prohibit
alternative states. A second is to lock down by an active
transcription subcircuit the state required in a given spatial
domain and at a given time. Commonly these are combined: a
regulatory state is set up in a given domain in response to an
initial transient input; the consequence of this is installation of a
feedback circuit, sometimes multiple feedback subcircuits,
within or among the cells of this domain which ensures the
continued active maintenance of this state (Figs. 2A, B; see
Memory: the electronic computer and the regulatory genome).
But also, within the domain, repressors of possible alternative
states are transcribed (Fig. 2C); and at the same time in cells
outside the domain, the regulatory state of the cells within the
domain considered is specifically repressed at the transcrip-
tional level. Furthermore, in addition to feedback subcircuits,
there are other positive circuit devices that reinforce given states
beyond their initial specification. These include feed forward
subcircuits (Fig. 2D) and more complex cross-regulatory
subcircuits in which multiple inputs impinge on each gene,
and these inputs themselves derive from genes which respond to
one another's outputs. A synthetic example meant to illustrate
the way such circuit design elements are combined to produce
robust regulatory states in two adjacent territories is shown in
Fig. 2E (see legend). The example is imaginary, but not too
imaginary: all of the design features in Figs. 2A–D and all the
combinations in Fig. 2E are indeed to be found in the sea urchin
endomesoderm gene regulatory network (for current version see
http://sugp.caltech.edu/endomes/), and they occur in various
other such networks as well (reviewed in Davidson, 2006).

Genomic circuit designs of this nature may seem unneces-
sarily redundant, compared to a minimum streamlined
engineering design. Their character emerges from two funda-
mental attributes. First, they have been selected in evolution to
provide maximum insurance against the possibility of cata-
strophic developmental failure, even under rare circumstances.
In their architecture resides the “strongly built” quality of
cellular regulatory state specification. Second, the subcircuit
elements of any given developmental system may be of
different ages and origins in evolution (Davidson and Erwin,
2006); some pieces of the system have been co-opted from
other functions, others assembled de novo and added in on top
of pre-existing subcircuits.

In addition there is an underlying layer of robust regulatory
design not considered here. This is in the internal structure of
the individual cis-regulatory modules which constitute the
nodes of gene regulatory networks (exemplified by the endo16
gene; Yuh et al., 2001, 2005). For example such modules often
contain multiple target sites for given factors and utilize
multiple different factors to accomplish given tasks, such as
promoting gene expression.

Hardware and software: the electronic computer and the
regulatory genome

Computational paradigms are based on the concepts of
hardware and software. However, nothing shows more clearly
the distinctions between manmade computers and the genomic
information processing system than the clumsiness of the
concepts of hardware and software when these concepts are
applied to biological regulatory systems. Genomic DNA is both
the essential physical component of the regulatory apparatus
(hardware) and the digital regulatory code (software); these
properties are physically inseparable. The transcription factors
are physical entities which execute regulatory functions (hard-
ware) but their summed identity in any given nucleus at any time
constitutes the regulatory input program for that moment
(software); these properties too are physically inseparable. The
concept of computational hardware is particularly inadequate for
gene regulatory networks, which are continuously reorganizing
themselves as new regulatory genes come into play and engage
new targets to deploy new subcircuits. Readout of the DNA
produces new transcription factor combinations and thus new
regulatory states, and these cause further new readout of the
DNA. This is the essence of development, i.e., change in
regulatory state: but conventional computers do not develop as
they work.

So how should we think of the overall genomic regulatory
code for the body plan of each species that is inherited with its
genomic sequence? The regulatory machinery is a real physical
entity consisting of those DNA sequences constituting its cis-
regulatory units. Its operation is mandated by its hardwired cis-
regulatory sequence, but what it does depends entirely on the
regulatory state these sequences see in each given cell at each
given time. If we add together all the conditional gene network
operations, integrating over all cells and the whole life cycle,
then we arrive at the total regulatory potentiality of the organism.
But the operative words here are “potential” and “conditional”:
genes and their regulatory modules are used in overlapping
combinations to produce diverse functional connections among
regulatory genes in different developmental contexts. We can

http://sugp.caltech.edu/endomes/


194 S. Istrail et al. / Developmental Biology 310 (2007) 187–195
imagine a static genomic map that includes all transcription
factor target sites for all genes, but this does not in itself tell us
how the regulatory system works in development since we can
only describe the regulatory code in terms of the operative gene
regulatory network architecture for all times and cells. The
conditional structure of the overall developmental regulatory
system of an animal is the basic reason “hardware” and
“software” as distinct aspects of the computational system are
not useable concepts for the genomic regulatory computer.

Evolvability and the genomic computer

Evolutionary change in the body plans of animals is driven by
reorganization of given aspects of developmental gene regula-
tory networks (Davidson and Erwin, 2006). What this means is
altering network architecture by altering the regulatory linkages,
particularly in CRMs that control regulatory gene expression.
This is the basic and general mechanism of body plan evolution
in animals, generally thought of as “co-option” of regulatory
gene expression to new functions (for a review see Davidson,
2001). Mechanistically, co-option depends on cis-regulatory
changes at the DNA level: either by the transposition of a pre-
existing CRM to the vicinity of a different gene, causing the gene
to fall under the different regulatory controls ordained by the
DNA sequence of the incident CRM, or by the mutational
acquisition in pre-existent CRMs of target sites for transcription
factors that did not previously affect them. If the gene controlled
by the CRM encodes a transcription factor, the result is potential
expression of a novel transcriptional regulatory state with
respect to time and space in the developing organism.

The regulatory evolution of the animal body plan by
institution of novel linkages among regulatory genes, the
most potent of all evolutionary mechanisms, depends directly
on a definitive physical feature of the genomic computer. Thus
the possibility that novel regulatory gene expression in a given
context will affect downstream events follows immediately
from the property that internal communication in the genomic
regulatory computer works by means of transcription factor
diffusion. For example, consider a regulatory gene that comes to
be expressed in a new spatial domain due to appearance of novel
activator sites in its CRM. In the diffusion-mediated interaction
system the factor this gene encodes will automatically find its
target sites in other genes since all potential DNA target sites are
searched. Thereby CRM mutations may cause effective change
in cellular regulatory state and hence in the functional character
of cells in a new spatial domain. The diffusion-mediated
communication mechanism of the genomic computational
system can be said to provide the essential mechanistic basis
of regulatory evolvability. This is of course a macroevolutionary
mechanism. Alterations in regulatory state may only affect
peripheral genes and produce small morphological changes, for
example, by addition of a given keratin genes to an integument
gene battery. But they may also produce much larger changes,
as for example if they affect expression of inductive signaling
molecules in space, or cause reassignment of gene network
subcircuits which encode aspects of the body plan (cf. Davidson
and Erwin, 2006).
Some implications

Abstractions focus the mind on essential features easily
occluded by masses of details. Viewing the genomic
regulatory system in terms of its logic processing functions
is an abstract approach that will ultimately have direct
practical import in the area of synthetic regulatory biology.
At the cis-regulatory level, the first implication is that given
kinds of logic gate and combinations thereof are functional
features that are independent of specific transcription factor
identities and biochemistries. That is, there are many ways to
make an AND gate or a NOT processor. This in turn invites
the approach of parsing known CRMs so as to deconstruct
them into their component elemental logic functions (as in the
start made by Istrail and Davidson, 2005). What will follow is
the redesign of synthetic CRMs that are functionally
equivalent to those which evolution has produced, in that
they execute the same logic, though using different biochem-
istries and factors. By such means will we achieve a final
level of demonstration that we understand what developmental
CRMs are really doing. The same arguments pertain to
synthetic redesign of information processing gene regulatory
network subcircuits. At this level as well, multiple combina-
tions of diverse regulatory genes are linked in different
systems to generate the same abstract outputs (e.g., Oliveri
and Davidson, 2007), which can be expressed in terms of
computational logic. This is the pathway to constructing new
biologically functional regulatory components, an inevitable,
inescapable challenge that lies ahead. Constructing these will
require understanding of the ways and means of the genomic
computer, just as redesign of electronic computers requires
comprehension of their principles.

A different kind of implication lies in the application of the
concept of the genomic computer to early animal evolution. In
all modern bilaterian animals information processing CRMs are
utilized for development (Davidson, 2006). Such CRMs might
likely exist in cnidarian and ctenophoran metazoans as well.
Development of all animals that display tissue grade morpho-
logical organization and fixed body plans requires that spatial
gene expression be exquisitely regulated. The fundamental
CRM logic gates, particularly AND and NOT gates, are utilized
in organizing spatial states of gene expression, specifically in
mandating domains of expression as opposed to domains of
non-expression. CRMs which operate in development accord-
ing to basically similar principles of combinatorial logic have
been found fromDrosophila to sea urchins and mice (Davidson,
2006). Since such CRMs are a common shared feature of the
genomic regulatory systems of complex animals, they must
have been present in their common ancestors, the bodies of
which, like those of their descendants, were formed by complex
developmental processes.

The CRMs that process spatial inputs are themselves
functionally linked into developmental gene regulatory net-
works in all types of animal embryo so far studied at this
level. These networks are also a shared property of complex
animals and therefore an ancestral character of complex
animals. In considering the more remote origins of animal life



195S. Istrail et al. / Developmental Biology 310 (2007) 187–195
forms, we have to imagine how the earliest gene regulatory
networks that controlled spatial gene expression in develop-
ment might have been assembled. Network assembly basically
requires that CRMs of given regulatory genes come to include
target sites for the products of other regulatory genes located
elsewhere in the enormous genome. The argument above
shows that evolutionary change in pre-existing gene regula-
tory networks by co-option requires the existence of the global
target search mechanism, i.e., diffusion of transcription
factors, which the genomic computer utilizes for intra-system
communication. Even the earliest steps of assembly of gene
regulatory networks in remote evolutionary time must have
depended from the outset on this same fundamental feature.
Put another way, regulatory communication by non-directed
diffusion underlies not only the evolvability of animal
regulatory systems once they appeared, but even the initial
existence of developmental processes of the nature of those
utilized in modern animals.

In summary, a view of the evolutionary process leading to
complex animals is that the essential properties of the
genomic computer discussed in this essay were the condition
for, and predate, complex animal forms: first came the
properties of the genomic computer, including logic proces-
sing CRMs and regulatory network subcircuits, and then
came programs for development built on these properties, and
hence the animals.

Acknowledgments

Smadar Ben-Tabou de-Leon was supported by the Human
Frontier Science Program Organization. Research was sup-
ported by NIH grant GM-61005.
References

Backus, J., 1978. Can programming be liberated from the von Neumann style?
Commun. ACM 21, 613–641.

Barolo, S., Posakony, J.W., 2002. Three habits of highly effective signaling
pathways: principles of transcriptional control by developmental cell
signaling. Genes Dev. 16, 1167–1181.

Davidson, E.H., 2001. Genomic Regulatory Systems. Development and
Evolution. Academic Press, San Diego.

Davidson, E.H., 2006. The Regulatory Genome. Gene regulatory networks in
development and evolution. Academic Press/Elsevier, San Diego, CA.

Davidson, E.H., Erwin, D.H., 2006. Gene regulatory networks and the evolution
of animal body plans. Science 311, 796–800.

Gurdon, J., 1988. A community effect in animal development. Nature 336,
772–774.

Hennessy, J.L., Patterson, D.A., 2003. Computer Architecture, a Quantitative
Approach. Morgan Kaufmann Publishers.

Istrail, S., Davidson, E.H., 2005. Logic functions of the genomic cis-regulatory
code. Proc. Natl. Acad. Sci. U. S. A. 102, 4954–4959.

Oliveri, P., Davidson, E.H., 2007. Built to run, not fail. Science 315, 1510–1511.
Stathopoulos, A., Levine, M., 2002. Dorsal gradient networks in the Drosophila

embryo. Dev. Biol. 246, 57–67.
von Neumann, J., 1945. First Draft of Report on EDVAC, Technical Report.

Moore School of Electrical Engineering, University of Pennsylvania.
von Neumann, J., 1958. The Computer and the Brain. Yale Univ. Press,

New Haven.
Yuh, C.-H., Bolouri, H., Davidson, E.H., 2001. cis-Regulatory logic in the

endo16 gene: switching from a specification to a differentiation mode of
control. Development 128, 617–628.

Yuh, C.-H., Brown, C.T., Livi, C.B., Rowen, L., Clarke, P.J.C., Davidson, E.H.,
2002. Patchy interspecific sequence similarities efficiently identify positive
cis-regulatory elements in the sea urchin. Dev. Biol. 246, 148–161.

Yuh, C.-H., Dorman, E.R., Howard, M.L., Davidson, E.H., 2004. An otx
cis-regulatory module: a key node in the sea urchin endomesoderm gene
regulatory network. Dev. Biol. 269, 536–551.

Yuh, C.-H., Dorman, E.R., Davidson, E.H., 2005. Brn1/2/4, the predicted
midgut regulator of the endo16 gene of the sea urchin embryo. Dev. Biol.
281, 286–298.


	The regulatory genome and the computer
	Introduction
	Fundamentals of information processing
	Properties of the genomic computational system
	Diffusion vs. wires: the electronic computer and the �regulatory genome
	Time and synchrony: the electronic computer and the �regulatory genome
	Multiplicity of processors: the electronic computer and the �regulatory genome
	Memory: the electronic computer and the regulatory �genome
	Robustness: the electronic computer and the regulatory �genome
	Hardware and software: the electronic computer and the �regulatory genome
	Evolvability and the genomic computer
	Some implications
	Acknowledgments
	References


