Pattern matching and text compression algorithms

Maxime Crochemore ! Thierry Lecroq 2

Hinstitut Gaspard Monge, Université de Marne la Vallée, 2 rue de la Butte Verte, F-93166 Noisy-le-Grand
Cedex, France, e-mail: mac@univ-mlv.fr

2|_aboratoire d Informatique de Rouen, Université de Rouen, Facultés des Sciences et Techniques, F-76821
Mont-Saint-Aignan Cedex, France, e-mail: lecrog@dir.univ-rouen.fr

Contents

1 Processing texts efficiently

2 String-matching algorithms
21 Kap-Rabinagorithm
22 Knuth-Morris-Prattagorithm o
23 Boye-Moorealgorithm oo
24 Quick Searchagorithm
25 Experimentalresultso
26 Aho-Corasickalgorithm

3 Two-dimensional pattern matching algorithms
31 Zhu-Takaokaalgorithm
3.2 Bird/Bakeragorithm. e

4 Suffix trees
41 McCreightalgorithm.

5 Longest common subsequence of two strings
51 Dynamicprogramming. o v et it e e e e e e e e e
5.2 Reducingthespace: Hirschbergalgorithm

6 Approximate string matching
6.1 Shift-Oralgorithm o
6.2 String matchingwith k mismatches
6.3 String matchingwith k differences oo
6.4 Wu-Manberagorithm

7 Text compression
7.1 Huffmancoding
711 Encoding.
712 Decodingo
72 LZWCOMPrESSION .« « . v v v o e e e e e e e e e e e e e e
721 Compressonmethod
722 Decompressionmethod Lo o
723 Implementation L
7.3 Experimentalresultso

8 Research Issuesand Summary

ol

o ~No o

12
13
14

20
20
21

9 Defining Terms
10 References

11 Further Information

62

63

65

List of Figures

21
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
213
214
2.15
2.16
217
2.18
2.19

31
3.2
3.3
34
35
3.6

4.1
4.2
4.3
44
4.5

5.1
5.2
5.3
5.4
5.5

The bruteforce string-matching algorithm. 7
The Karp-Rabin string-matching algorithm. 8
Shift in the Knuth-Morris-Pratt algorithm (v suffixof w). 8
The Knuth-Morris-Pratt string-matching algorithm. 9
Preprocessing phase of the Knuth-Morris-Pratt algorithm: computingnext 9
good-suffix shift, u reappears preceded by acharacter different fromé. 10
good-suffix shift, only aprefix of w reappearsinz. 10
bad-character shift, e appearsinz. oL 10
bad-character shift, « doesnot appearinz. 11
The Boyer-Moore string-matching algorithm. 12
Computation of the bad-character shift. 12
Computation of the good-suffix shift. 13
The Quick Search string-matchingagorithm. 14
RunningtimesforaDNA sequence. i 15
Runningtimesforanenglishtext. 16
Preprocessing phase of the Aho-Corasick agorithm. 16
Constructionof thetrie. 17
Completion of the ouput function and construction of failurelinks. 18
The Aho-Corasick algorithm. 19
The brute force two-dimensional pattern matching algorithm. 21
Search for 2’ iny’ using KMPalgorithm.o o000 22
Naive check of an occurrence of z in y at position (row, column). 22
The Zhu-Takaoka two-dimensional pattern matching algorithm. 23
Computesthe failure function of Knuth-Morris-Prattfor X. 24
The Bird/Baker two-dimensional pattern matching algorithm. 25
Suffix treeconstruction. L L. 30
Initidlizationprocedure.o 31
Thecrucial rescanoperation. 31
Breakinganedge. L 31
Thescanoperation. L. 32
Dynamic programming agorithm to compute llcs(z,y) = Lim,n]. 34
Productionof anles(z,y).o 35
O(min(m, n))-space agorithmto computelies(z,y). 35
Computationof L*. 36
O(min(m, n))-space computation of les(z,y).o L. 37

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
711
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
721

Meaningof vector RO. 39

IF RG] =0then RE ([+1]=0.. o o oot 40
RY,[j + 1] = RYj]if y[i—l— Y=zl oo 40
If R9[4] = Othen RZ+1[=0 41
RZ+1[J—|—1] RYj]if yli +]_;c[J+1]. 41
IfR il = 0thenRZ+1[J+ =0 . .. 42
RZ+1[J +=RYjlifyli+=ali+1. 42
Wu-Manber approximate string-matching algorithm. 44
Countsthe character frequencies. 46
Buildsthepriority queueof trees. 47
Buildsthecodingtree. 47
Buildsthe character codes by adepth-first-search of thecodingtree. 48
Memorizesthe coding treein thecompressedfile. 48
Encodesthe charactersinthecompressedfile. 48
Sendsonebitinthecompressedfile. L oL 49
Encodesnon9bits. 49
Outputsafina byteifnecessary. 49
Initializesthearray code. 49
Completefunctionfor Huffmancoding. 50
Rebuildsthe treeread from thecompressedfile. 52
Reads the next 9 bitsin the compressed file and returns the corresponding value. . . . 52
Reads the compressed text and producestheuncompressedtext. 53
Reads the next bit from thecompressedfile. 54
Completefunctionfordecoding. 54
Hashing function to accessthedictionary., 56
LZW compressionalgorithm. L 57
Bottom-up searchinthecodingtree. 57
LZW decompressionalgorithm. 58
Sizes of textscompressed with threealgorithms. 59

Chapter 1

Processing texts efficiently

The present report describes few standard a gorithmsused for processing texts. They apply for example
to the manipulation of texts (word editors), to the storage of textual data (text compression), and to data
retrieval systems. The algorithms of the report are interesting in different aspects. First, they are basic
components used in the implementations of practical softwares. Second, they introduce programming
methodsthat serve as paradigmsin other fields of computer science (system or software design). Third,
they play an important role in theoretical computer science by providing challenging problems.

Although dataare memorized in variousways, text remainsthe main form to exchange information.
Thisis particularly evident in litterature or linguistics where data are composed of huge corpus and
dictionaries. Thisapply as well to computer science where alarge amount of data are stored in linear
files. And thisis also the case, for instance, in molecular biology because biological molecules can
often be approximated as sequences of nucleotides or aminoacids. Moreover the quantity of available
datain these fields tend to double every eighteen months. Thisis the reason why algorithms should be
efficient even if the speed of computersincreases regularly.

Pattern matching is the problem of |ocating aspecific pattern insideraw data. The patternisusually
acollection of strings described in some formal language. Two kinds of textual patterns are presented:
single strings and approximated strings. We present two algorithms for matching patterns in images
that are extensions of string-matching agorithms.

In severa applications, texts need to be structured before searched. Even if no further information
isknown on their syntactic structure, it is possibleand indeed extremely efficient to built adatastructure
that supports searches. Among several existing data structures equivalent to indexes, we present the
suffix tree with its construction.

The comparison of strings is implicit in the approximate pattern searching problem. Since it is
sometimes required just to compare two strings (files, or molecular sequences) we introduce the basic
method based on longest common subsequences.

Finally, the report contains two classical text compression algorithms. Variants of these algorihms
areimplemented in practical compression softwares, in which they are often combined together or with
other elementary methods.

The efficiency of algorithmsis evaluated by their running time, and sometimes a so by the amount
of memory space they require at run time.

Chapter 2

String-matching algorithms

String matching consistsin finding one, or more generally, all the occurrences of a pattern in a text.
The pattern and the text are both strings built over a finite alphabet (finite set of symbols). All the
algorithms in this section output all occurrences of the pattern in the text. The pattern is denoted by
z = z[0...m — 1]; itslength isequal to m. The text isdenoted by y = y[0...n — 1]; itslength is
equal to n. The alphabet is denoted by > and itssizeisequal to o.

String-matching algorithms of the present section work as follows: they first align the left ends
of the pattern and the text, then compare the characters of the text aligned with the characters of the
pattern — this specific work is called an attempt — and after a whole match of the pattern or after a
mismatch they shift the pattern to theright. They repeat the same procedure again until the right end of
the pattern goes beyond the right end of the text. We associate each attempt with the position ¢ in the
text when the pattern isaligned with y[i .. .i + m — 1].

The brute force algorithm consists in checking, at al positionsin the text between 0 and n — m,
whether an occurrence of the pattern starts there or not. Then, after each attempt, it shifts the pattern
exactly one position to theright. The brute force algorithm is given Figure 2.1.

The time complexity of the brute force algorithm is O (mn) in the worst case but its behaviour in
practiceis often linear on specific data.

2.1 Karp-Rabin algorithm

Hashing providesasimplemethod to avoid aquadratic number of symbol comparisonsin most practical
situations. Instead of checking at each position of the text if the pattern occurs, it seems to be more
efficient to check only if the portion of the text aligned with the pattern “looks like” the pattern. In
order to check the ressemblance between these portions a hashing function is used. To be helpful for
the string-matching problem the hashing function should have the following properties:

o efficiently computable,

¢ highly discriminating for strings,

e hash(yli+ 1...i 4+ m]) must be easily computable from hash(y[i...i + m — 1]):

hash(yli + 1...i 4+ m]) = rehash(y[i], y[i + m], hash(y[i ...t + m — 1]).

For aword w of length m let hash(w) be defined as follows:

hash(w[0...m — 1]) = (w[0] * 2" + w[1]* 2" 2 4 ... 4+ w[m — 1]) mod ¢

voi d BF(char *y, char *x, int n, int m
{

int i;

/* Searching */

i =0;
while (i <= n-nm {
j =0;
while (j <m& y[i+] ==x[j]) j++
if (j > m OUTPUT(i);
i+ /* shift one position to the right */
}
}

Figure 2.1: The brute force string-matching algorithm.

where ¢ is alarge number. Then,
rehash(a,b,h) = ((h —a+2™"1) 2+ b) mod q.

During the search for the pattern z, it is enough to compare hash(z) with hash(y[i .. .7 + m — 1]) for
0 <i < n—m. If anequality isfound, itisstill necessary to check theequality =z = y[i...i + m — 1]
symbol by symbol.

In the algorithm of Figure 2.2 all the multiplicationsby 2 are implemented by shifts. Furthermore,
the computation of the modulus function is avoided by using the implicit modular arithmetic given by
the hardware that forgets carries in integer operations. So, ¢ is chosen as the maximum value of an
integer.

The worst-case time complexity of the Karp-Rabin algorithm isquadratic in the worst case (asit is
for the brute force algorithm) but its expected running timeis O(m + n).

Example 2.1:

Let z = ing.

Then hash(z) = 105 22 4 110 + 2 4 103 = 743 (values computed with the ASCI| codes).
y='s t r 1 n ¢ m a t ¢ h I n ¢

hash = 806 797 776 743 678 585 443 746 719 766 709 736 743

2.2 Knuth-Morris-Pratt algorithm

We present thefirst discovered linear-time string-matching algorithm. Itsdesign followsatight analysis
of the brute force algorithm, and especially on the way this latter agorithm wastes the information
gathered during the scan of the text.

Let uslook more closdly at the brute force algorithm. It is possible to improve the length of shifts
and simultaneously remember some portions of the text that match the pattern. This saves comparisons
between characters of the text and characters of the pattern and consequently increases the speed of the
search.

#define REHASH(a, b, h) (((h-a*d)<<1)+b)

voi d KR(char *y, char *x, int n, int m

{

int hy, hx, d, i;

/* Preprocessing */

d=1;

for (i=1, i <m i++) d=(d<<1);
hy=hx=0;

for (i=0; i <m i++) {
hx=((hx<<1) +x[i]);
} hy=((hy<<1)+y[i]);

/* Searching */

i =m

while (i <n) {
if (hy == hx && strncnp(y+i-m x, m == 0) OUTPUT(i-m;
hy=REHASH(y[i-n], y[i], hy);
i ++;

Figure 2.2: The Karp-Rabin string-matching algorithm.

Consider an attempt at position 7, that iswhen the pattern z[0.. . . m — 1] isaligned with the window
y[i...i + m — 1] on the text. Assume that the first mismatch occurs between y[i + ;] and z[7] with
1<j<m Thenyli...i+j—1 =2[0...; — 1] = wanda = y[i + j] # «[j] = b. When
shifting, it is reasonnable to expect that a prefix » of the pattern match some suffix of the portion « of
the text. Moreover, if we want to avoid another immediate mismatch, the letter following the prefix »
in the pattern must be different from b. The longest such prefix v is called the border of « (it occurs
at both ends of). This introduces the notation: let nexzt[j] be the length of the longest border of
z[0...5 — 1] followed by a character ¢ different from y[j]. Then, after a shift, the comparisons can
resume between characters y[i 4+ j] and z[j — next[5]] without missing any occurrence of = in y, and
avoiding a backtrack on the text (see Figure 2.3).

i 1+
y L v e
#
z | u [0]
#
z Lo [|

Figure 2.3: Shift in the Knuth-Morris-Pratt algorithm (v suffix of «).

voi d KMP(char *y, char *x, int n, int nm

{
int i, j, next[XSlZE];

/* Preprocessing */
PRE_KMP(x, m next);

/* Searching */

i =j =0;

while (i < n) {
while (j > -1 && x[j] '=y[i]) j=next[j];
i ++;]+t
if (j >>m { QUTPUT(i-j); j=next[n; }

Figure 2.4: The Knuth-Morris-Pratt string-matching algorithm.

voi d PRE_KMP(char *x, int m int next[])

int i, j;
i =0; j=next[0]=-1;
while (i <m {
while (j > -1 && x[i] = x[j]) j=next[j];
i ++;]+t
if (x[i] == x[j]) next[i]=next[j];
el se next[i]=j;
}
}

Figure 2.5: Preprocessing phase of the Knuth-Morris-Pratt algorithm: computing next .

Example 2.2:

Y= a b a b a a

T = a b ab ab a

T = a b a b a b a

Compared symbolsare underlined. Note that the border of ababa isaba.

TheKnuth-Morris-Pratt algorithmisdisplayedin Figure2.4. Thetablenexzt it usescan be computed
in O(m) time before the search phase, applying the same searching algorithm to the pattern itself, as
if y = z (see Figure 2.5). The worst-case running time of the algorithm isO(m + n) and it requires
O(m) extra-space. These quantity are independent of the size of the underlying a phabet.

2.3 Boyer-Moorealgorithm

The Boyer-Moore agorithm is considered as the most efficient string-matching agorithm in usua
applications. A simplified version of it or the entire agorithm is often implemented in text editor for

9

7 shift
T |b| U |<—>
#
z L el u | |

Figure 2.6: good-suffix shift, « reappears preceded by a character different from b.

y |a | u |
7 shift
z [b] u |
z [v] |

Figure 2.7: good-suffix shift, only a prefix of « reappearsin x.

the“search” and “substitute” commands.

The agorithm scans the characters of the pattern from right to left beginning with the rightmost
symbol. In case of a mismatch (or a complete match of the whole pattern) it uses two precomputed
functions to shift the pattern to the right. These two shift functions are called the bad-character shift
and the good-suffix shift.

Assume that a mismatch occurs between the character z[j] = b of the pattern and the character
y[i+J] = aof thetextduringanattempt at position:. Then, y[i+j+1...i+m—1] = z[j+1...m—1] =
wandy[i+ 7] # x[j]. Thegood-suffix shift consistsinaligningthesegment y[i+j+1...i+m—1] =
z[j+ 1...m — 1] withitsrightmost occurrencein z that is preceded by acharacter different from z[;]
(see Figure 2.6). If there exists no such segment, the shift consistsin aligning the longest suffix » of
yli+7+ 1...1+ m — 1] withamatching prefix of = (see Figure 2.7).

Example 2.3:
Y= . . a b b a a b b a b b a
r= a b b a a b b a b b a
r = a b b aabbabba
The shift is driven by the suffix abba of = found in the text. After the shift, the segment abba of y
y] u |
7 shift
T |b| U |<—>
x | [a] contains no « |

Figure 2.8: bad-character shift, « appearsin z.

10

y o | u |

7 shift
z [b] u |

x | containsno a |

Figure 2.9: bad-character shift, « does not appear in z.

matches a segment of x. The same mismatch does not recur.

Example 2.4

y= . . . a b b a a b b a b b a b b a
r = b b ab b ab b a

r = b b abbabba
The segment abba found in y partially matches a prefix of = after the shift.

The bad-character shift consistsin aligning the text character y[i 4 5] with its rightmost occurrence
inz[0...m — 2] (see Figure 2.8). If y[i 4+ ;] does not appear in the pattern z, no occurrence of z in
y can include y[i + j], and the left end of the pattern is aligned with the character immediately after
y[t + 7], namely y[¢ + 7 + 1] (see Figure 2.9).

Example 2.5:

y= a b c d

xr= ¢ d a h g f e b c d

x = c d a h gf e b c d

The shift alignsthe symbol a in z with the mismatch symbol a in the text.
Example 2.6:

y= a b c d

= ¢ d h g f e b c d

x = c d h gf e b c d

The shift positionsthe |eft end of z right after the symbol a of y.

TheBoyer-MooreagorithmisshowninFigure2.10. For shifting the pattern, it appliesthemaximum
between the bad-character shift and the good-suffix shift. More formally the two shift functions are
defined as follows. The bad-character shift is stored in atable be of size o and the good-suffix shift is
storedinatable gs of sizem + 1. Fora € 2.

be[a] = min{j /1<j<mandz[m—1-j]=a} ifaappeasinz,
A= m otherwise.

Let us define two conditions:

condy(j,s): foreachk suchthat j < k < m,s > korz[k — s] = z[k]
condy(j,s): if s < jthenz[j — s] # z[j]

Then, for 0 <7 < m:

gs[t + 1] = min{s > 0/ condi(i, s) and condy(t, s) hold}

11

void BM char *y, char *x, int n, int m

{
int i, j, gs[XSlZE], bc[ASIZE];

/* Preprocessing */
PRE_GS(x, m gs);
PRE_BC(x, m bc);

/* Searching */

i =0;
while (i <= n-nm {
j=m1;
while (j >= 0 && x[j] == y[i+j]) j--;
if (j < 0) QUTPUT(i);
i +=MAX(gs[j +1], bc[y[i+j]]-m+ +1); [* shift */
}
}

Figure 2.10: The Boyer-Moore string-matching algorithm.

voi d PRE_BC(char *x, int m int bc[])

{

int j;

for (j=0; j < ASIZE; j++) bc[j]=m

for (j=0; j <m1l; j++) bc[x[j]]=mj-1;
}

Figure 2.11: Computation of the bad-character shift.

and we define gs[0] as the length of the smallest period of x.

Tables be et gs can be precomputed in time O(m + o) before the search phase and require an
extra-space in O(m + o) (see Figures 2.12 and 2.11). The worst-case running time of the algorithm
is quadratic. However, on large aphabets (relatively to the length of the pattern) the algorithm is
extremely fast. Slight modifications of the strategy yield linear-time algorithms (see the bibliographic
notes). When searching for ™~ in a™ the algorithm makes only O(n/m) comparisons, which
is the absolute minimum for any string-matching algorithm in the model where the pattern only is
preprocessed.

2.4 Quick Search algorithm

The bad-character shift used in the Boyer-Moore algorithm is not very efficient for small al phabets, but
when the al phabet islarge compared with the length of the pattern, asit is often the case with the ASCI|
table and ordinary searches made under atext editor, it becomesvery useful. Usingit alone produces a
very efficient algorithm in practice.

After an attempt where z isaligned with y[i . . . + m — 1], the length of the shiftisat least equal to
one. So, the character y[i + m] isnecessarily involved in the next attempt, and thus can be used for the

12

voi d PRE_GS(char *x, int m int gs[])

{
int i, j, p, f[XSIZzZg;
for (i=0; i <= m i++) gs[i]=0;
fLn] =) =med;
for (i=m i >0; i--) {
while (j <= m&& x[i-1] '= x[j-1]) {
if (tos[i]l) gslil=j-i;
i=flil;
}
fli-1]=--j;
}
p=f[0];

for (j=0; j <=m j++) {
if ('gs[j]) gs[il=p;
if (j ==p) p=flp];

Figure 2.12: Computation of the good-suffix shift.

bad-character shift of the current attempt. The bad-character shift of the present algorithm is slightly
modified to take into account the last symbol of = asfollows (« € %):

be[a] = min{j /0<j<mandz[m—1-j]=a} ifaappeasinz,
A=Y m otherwise.

The comparisons between text and pattern characters during each attempt can bedonein any order. The
algorithm of Figure 2.13 performs the comparisons from left to right. The agorithm is called Quick
Search after hisinventor. It has a quadratic worst-case time complexity but a good practical behaviour.
Example 2.7:

y= s t r i n g - mat c h i n g
r= 1 n ¢

T = i ng

z = B i n g

x = i n g
x = i n g

Quick Search agorithm makes 9 comparisons to find the two occurrences of i ng inside the text of
length 15.

2.5 Experimental results

In Figures 2.14 and 2.15 we present the running times of three string-matching a gorithms: the Boyer-
Moore agorithm (BM), the Quick Search agorithm (QS), and the Reverse-Factor agorithm (RF). The
Reverse-Factor agorithm can be viewed as a variation of the Boyer-Moore agorithm where factors
(segments) rather than suffixes of the pattern are recognized. RF algorithm uses adata structureto store
all thefactors of the reversed pattern: a suffix automaton or a suffix tree (see Chapter 4).

13

void QS(char *y, char *x, int n, int m

{
int i, j, bc[ASIZE];

/* Preprocessing */
for (j=0; j < ASIZE; j++) bc[j]=m
for (j=0; j <m j++) be[x[j]]=mj-1;

/* Searching */

i =0;
while (i <= n-m {
i=0;
while (j <m&&Xx[j] == y[i+]) |+
if (j > m OUTPUT(i);
i +=bc[y[i+n]]+1; [* shift */
}
}

Figure 2.13: The Quick Search string-matching algorithm.

Tests have been performed on various types of texts. In Figure 2.14 we show the result when the
text is a DNA sequence on the four-letter alphabet of nucleotides {4, C,G,T}. In Figure 2.15 english
text is considered.

For each pattern length, we ran alarge number of searches with random patterns. The average time
according to the length is shown is the two Figures. Both, preprocessing and searching phases running
times are totalized. The three algorithms are implemented in a homogeneous way in order to keep the
comparison significant.

For the genome, as expected, QS algorithm is the best for short patterns. But for long patterns it is
less efficient than BM algorithm. In this latter case RF algorithm achieves the best results. For rather
large aphabets, asit is the case for an english text, QS algorithm remains better than BM algorithm
whatever the pattern length is. In this case the three algorithms perform slightly alike; QS is better for
short patterns (which isthe typical search under atext editor) and RF is better for large patterns.

2.6 Aho-Corasick algorithm

The UNIX operating provides standard texts (or files) facilities. Among them is the series of gr ep
command that |ocate patternsin files. We describe in this section the a gorithm underlying thef gr ep
command of UNIX. It searchesfilesfor afiniteset of stringsand can for instance outputslines containing
at least one of the strings.

If we are interested in searching for &l the occurrences of al patterns taken from a finite set of
patterns, a first solution consists in repeating some string-matching algorithm for each pattern. If the
set contains k patterns, this search runs in time O(kn). Aho and Corasick designed an O(nlogo)
algorithm to solve this problem. The running time is independent of the number of patterns. The
algorithmis adirect extension of the Knuth-Morris-Pratt algorithm.

Let X = {z1,z2,...,2} bethe set of patterns, and let | X| = |z1| + |z2| + - - - + |zx| be the
total size of the set X. The Aho-Corasick agorithm first consistsin building atrie 7'(X), digital tree
recognizing the patterns of X . Thetrie 7(X) is a tree which edges are |abelled by letters and which

14

420 4+——- ——
4.00 l‘
3.80

3.60
3.40

|
!
3.20 |
\
!

3.00
2.80 -
2.60 "'.' \
2.40 "'..‘ \\
2.20
i

2.00 5
1.80 \\

1.60

1.40
1.20
1.00
0.80
0.60

0.40 i — »
0.20

0.00 20.00 40.00 60.00 80.00

Figure 2.14: Running times for a DNA sequence.

branches spell the patterns of X . We identify anode p in thetrie 7'(X') with the unique word w spelled
by the path of 7'(X') from itsroot to p. Theroot itself is identified with the empty word: ¢. Notice that
if wisanodein7'(X) then w isaprefix of somez; € X.

Thefunction PRE_ACin Figure 2.16 returnsthetrie of all patterns. During the second phase where
pattern are entered in thetrie the algorithm initializes an output function out. It associates the singleton
{z;} with the nodes z; (1 < ¢ < k), and associates the empty set with all other nodes of 7'(X') (see
Figure 2.17).

Thelast phase of function PRE_AC (Figure 2.16) consistsin building the failurelink of each node of
the trie, and simultaneously completing the output function. Thisis done by the function COVPLETE
in Figure 2.18. Thefailurefunction f isdefined on nodes as follows (w isanode):

f(w) = uwwhere u isthelongest proper suffix of w that belongsto 7'(X).

Compuitation of failure linksis done using a breadth-first search of 7°(.X). Completion of the output
function is done while computing the failure function f in the following way:

if f(w) = uthenout(w) = out(w) U out(u).

In order to stop going back with failure links during the computation of the failure links, and aso in
order to pass text characters for which no transition is defined from the root, it is necessary to add a
loop on theroot of the trie for these characters. Thisis done by the first phase of function PRE_AC.
After the preprocessing phaseis compl eted, the searching phase consistsin parsing al the characters
of thetext y with7’(X'). Thisstartsat theroot of 7'(X) and uses failure links whenever acharacter of y
does not match any label of edges outgoing the current node. Each time anode with anon-empty value

15

0.00 20.00 40.00 60.00 80.00

Figure 2.15: Running timesfor an english text.

NODE PRE_AC(char X[KSI ZE] [XSI ZE], int k)
{

NODE root; int i, c;

r oot =ALLOCATE_NCDE() ;

/* creates loops on the root of the trie */
for (c=0; ¢ < ASIZE; c++) PUT_EDCE(root, c, root);

/* enters each pattern in the trie */
for (i=0; i < k; ++i) ENTER(X[i], root);

[* conpletes the trie with failure links */
COVPLETE(r oot) ;

return(root);

}

Figure 2.16: Preprocessing phase of the Aho-Corasick agorithm.

16

voi d ENTER(char *x, NODE root)
{

int m i;

NCDE r, s;

nestrlen(x);
r=root; i=0;

/* follows the existing edges */

while (i < m&~& (s=GET_NODE(r, x[i])) != UNDEFINED && s !=r) {
r=s; i++;

}

/* creates new edges */

while (i <m {
s=ALLOCATE_NCDE() ;
PUT_EDGE(r, x[i], s);
r=s; i++;

}

PUT_QUTPUT(r, x);
}

Figure 2.17: Construction of thetrie.

for the output function is encountered, this means that the patterns contained in the output function of
this node have been discovered in the text, ending at the current position. The position is then output.

The Aho-Corasick agorithm implementing the previous discussion is shown in Figure 2.19. Note
that the algorithm processes the text in an on-line way, so that the buffer on the text can be limited to
only one symbol. Also notethat theinstructionr =GET_FAI L(r) inFigure 2.19 isthe exact analogue
of instruction j =next [j] in Figure 2.4. A unified view of both agorithms exist but is out of the
scope of the report.

The entire algorithm runsintime O(| X | 4+ ») if the GET_NODE function is implemented to run in
constant time. Thisis the case for any fixed aphabet. Otherwise alogo multiplicative factor comes
from the execution of GET_NCDE.

17

voi d COVPLETE(NCDE r oot)

{

QUEUE q;
LIST I;
NODE p, r, s, u;
char c;

q=EMPTY_QUEUE() ;
| =GET_SONS(r oot) ;

while (!'LIST_EMPTY(1)) {
r=FI RST_N(1); /* r is a son of the root */
[=NEXT(1);
ENQUEUE(q, r);
PUT_FAI L(r, root);
}

while (! QUEEUE EMPTY(q)) {

r =DEQUEUE(q) ;

| =GET_SONS(r);

while (!LIST_EMPTY(1)) {
p=FI RST_N(1);
c=FIRST_L(I); /* (r,p) is a edge labelled with c */
| =NEXT(I);
ENQUEUE(q, p);
S=CGET_FAI L(r);
whil e ((u=CGET_NODE(s, c)) == UNDEFI NED) s=GET_FAI L(s);
PUT_FAIL(p, u);
ADD_QUTPUT(p, u);

Figure 2.18: Completion of the ouput function and construction of failure links.

18

Example 2.8:

X = {search, ear,arch, chart}

¢ {s,e,a,c}
J>)
Y

(¢)
(7]
<ﬂ>

QD
(7]
[¢]
QD

—

(@]

>

nodes || ¢ se sea | sear | searc | search e ea ear
fail || e | ¢ e ea ear arc ar ch € a ar
nodes||a | ar | arc | arch c ch cha char | chart
fatl || e | ¢ c ch € € a ar €

nodes || sear sear ch ear arch chart

out || {ear} | {search,arch} | {ear} | {arch} | {chart}

int AC(char *y, char X KSIZE][XSl ZE], int n, int k)

{
NODE r, s;
int i;

/* Preprocessing */
r=PRE_AC(X, k);

/* Searching */

for (i=0; i <n; ++i) {
while ((s=GET_NODE(r, y[i])) == UNDEFINED) r=CGET_FAIL(r);
r=s;
QUTPUT(r, i);

}

}

Figure 2.19: The Aho-Corasick algorithm.

19

Chapter 3

Two-dimensional pattern matching
algorithms

In this section only we consider two-dimensional arrays. Arrays may be thought as bitmap representa-
tions of images, where each cell of the arrays contains the codeword of a pixel. The string-matching
problem finds an equivalent formulation in two dimensions (and even in any number of dimensions),
and algorithms of Chapter 2 extendsto arrays.

The problem is now to find al occurrences of a two-dimensional pattern = = z[0...mq —
1,0...mp — 1] of size m1 x my inside a two-dimensional text y = [0...n1 — 1,0...np — 1] of
size ny x ny. The bruteforce agorithm for this problemis given in Figure 3.1. It consistsin checking
at al positionsof y[0...n1 — m1,0...np — my] if the pattern occurs. The brute force agorithm has
a quadratic (with respect to the size of the problem) worst-case time complexity in O(mimaning).
We present in the next sections two more efficient algorithms. The first one is an extension of the
Karp-Rabin agorithm (Section 2.1). The second solvesthe problem in linear-time on afixed a phabet;
it uses both the Aho-Corasick and the Knuth-Morris-Pratt algorithms.

3.1 Zhu-Takaoka algorithm

Asfor one-dimensional string matching, it is possibleto check if the pattern occursin the text only if
the “aigned” portion of the text “looks like” the pattern. The ideais to use the hash function method
proposed by Karp and Rabin vertically. First, the two-dimensionna arrays of characters, = and y, are
translated into one-dimensional arrays of numbers, =’ and y’. The translation from z to 2’ is done as
follows (0 < ¢ < my):

@'[i] = hash(z[0, t]z[1,i]...x[my — 1,1])

and the trandlation from y to ¢’ isdone by (0 < 7 < my):
y'[i] = hash(y[0,i]y[1,1]...y[m1 — 1,4]).

Thefingerprint ¢’ helps to find occurrences of = starting a row j = 0in y. It isthen updated for each
new row in thefollowingway (0 < 7 < my):

hash(ylj+1,iyj+2,4]. . .yli+ma, 1)) = rehash(ylj, i, y[j+ma,], hash(yls, ily[j+1,4] . . .y[i+m1—1,14]))

(functions hash and rehash are used in the Karp-Rabin algorithm of Section 2.1).

20

typedef char Bl G | MAGE[YSI ZE] [YSI ZE] ;
typedef char SMALL_| MAGE[XSI ZE] [XSI ZE] ;

void BF_2D(BI G I MAGE y, SMALL_IMAGE x, int nl, int n2, int m, int nR)

{
int i, j, k;

/* Searching */
for (i=0; i <= nl-ml; i++)
for (j=0; j <= n2-nR; j++) {

k=0;
while (k < ml && strncmp(&[i+k][j], x[k], nm2) == 0) k++;
if (k >= ml) OUTPUT(i,j);
}
}
Figure 3.1: The brute force two-dimensional pattern matching algorithm.
Example 3.1:
al/bla|bla|b|b
2Tala alalala|b|b|b
blb|bjlajajal|b
2 alb alala|b|blala
blb|lajaja|b|b
alalbla|b|ala

o' =[681] 681 | 680 |y =[680 | 684 | 680 | 683 | 681 | 685 | 686 |

Since the aphabet of =’ and ¢’ is large, searching for ' in 4’ must be done by a string-matching
algorithm which running timeis independent of the size of the aphabet: the Knuth-Morris-Pratt suits
perfectly for this application. Its adaptation is shown in Figure 3.2.

When an occurrence of z’ isfound in ¢/, then, we still have to check if an occurrence of = startsin
y a the corresponding position. Thisis done naively by the procedure of Figure 3.3.

The Zhu-Takaoka a gorithm working as explained above is dispayed in Figure 3.4. The search for
the pattern is performed row by row beginning at row 0 and ending at row nj — mj.

3.2 Bird/Baker algorithm

The algorithm designed independtly by Bird and Baker for the two-dimensiona pattern matching
problem combines the use of the Aho-Corasick algorithm and the Knuth-Morris-Pratt algorithm. The
pattern z is divided into its mq rows. Rg = z[0,0...mp — 1] t0 R,,,—1 = x[m1 — 1,0...mp — 1].
Therows are preprocessed into atrie asin the Aho-Corasick algorithm.

21

voi d KMP_IN_LINE(BI G | MAGE Y, SMALL_IMAGE X, int YB[], int XB[],
int nl, int n2, int m, int n2, int next[], int row
{

int i, j;

i =j =0;
while (j < n2) {
while (i > -1 & XB[i] != YB[j]) i=next[i];
i ++;]+t
if (i >=nm) {
DI RECT_COWPARE(Y, X, nl, n2, ml, n2,
i =next [nR] ;
}

row, j-1);

Figure 3.2: Search for 2’ in y" using KMP algorithm.

voi d DI RECT_COWPARE(BI G | MAGE Y, SMALL | MAGE X, int nl, int n2,
int m, int nm2, int row, int colum)
{

int i, j, i0, jO;

i O=r ow nl+1;
j O=col um- n2+1;
for (i=0; i < ml; i++)
for (j=0; j < n2; j++)
if (X[1][j] "= Y[iO+i][jO+j]) return;
QUTPUT(i 0, jO);
}

Figure 3.3: Naive check of an occurrence of z in y at position (row, column).

22

#def i ne REHASH(a, b, h) (((h-a*d)<<1) +b)

void ZT(BI G I MAGE Y, SMALL_IMAGE X, int nl, int n2, int ni, int nR)

{
int YB[YSIZE], XB[XSIZE], next[XSIZE], j, i, row, d;

/* Preprocessing */
/* Computes first value y' */
for (j=0; j < n2; j++) {
YB[j] =0;
for (i=0; i <ml; i++) YB[j]=(VYB[]j]<<1)+Y[illjl;
}

/* Computes x' */
for (j=0; j < n@; j++) {

XB[j] =0;

for (i=0; i <ml; i++) XB[j]=(XB[j]<<1)+X[i]l[j];
}

row=ml-1;
d=1;
for (j=1;, j < ml; j++) d<<=1;

PRE_KMP(XB, n2, next);

/* Searching */
while (row < nl1) {
KMP_I N _LINEC(Y, X, YB, XB, nl, n2, ml, n2, next, row);
if (row< nl-1)
for (j=0; j < n2; j++)
YB[j] =REHASH(Y[row ml+1][j], Y[row+1][j], VYB[j]);
r OW++;

Figure 3.4: The Zhu-Takaoka two-dimensional pattern matching algorithm.

23

voi d PRE_KMP(SMALL_I MAGE X, int ni, int n2, int next[])
{

int i, j;

i =0;
next[0] = =(-1);
while (i < ml) {
while (j > -1 & strnenp(X[i], Xjl, nR) !'=0) j=next[j];
i ++;]+t
if (strncmp(X[i], X[j], nm2) == 0) next[i]=next[j];
el se next[i]=j;

}
}
Figure 3.5: Computesthe failure function of Knuth-Morris-Pratt for X .
Example 3.2:
Thetrie of rows of pattern z.
bla|a
x=|al|b|b
bla|a
¢ #{a,b} b b
N2 D) (ab)
H—@D—)=
b a ,~— a
D) (ba)y—(baa)

The search proceeds as follows. The text is read from the upper left corner to the bottom right
corner, row by row. When reading the character y[:, j] the agorithm checks whether the portion
y[t,j — ma+ 1...j] = R matches any of Rj,...R,,,—1 using the Aho-Corasick machine. An
additional one-dimensional array « of size O(n1) isused asfollows:

a[j] = k meansthat the k — 1first rows Ry, . . ., Rj_» of the pattern match respectively
theportionsof thetext: y[i —k+ 1,5 — mo+1...5],...,y[i— 1,7 —ma+ 1...5].

Then, if R = Ry_1, a[j] isincremented to k& + 1. If not, a[j] isset to s + 1 where s isthe maximum ¢
such that:

Ro...R; = Rk—s-l—l ...Ri_oR.

The value s is computed using KMP vertically (in columns). If there exists no such s, a[j] isset to 0.
Finaly, if a[j] = m1 an occurrence of the pattern appears at position (¢ — m1 4+ 1,5 — ma + 1) inthe
text.

The Bird/Baker algorithm is presented in Figures 3.5 and 3.6. It runs in time O((nin2 +
mimy)logo).

24

void B(BIG IMAGE Y, SMALL IMAGE X, int nl, int n2, int m, int nR)
{

int next[XSl ZE], a[TSlZE], row, colum, Kk;

NCDE root, r, s;

char *x;

/* Preprocessing */

nmenset (a, 0, n2*sizeof (int));
root =PRE_AC(X, nil, nR);

PRE KMP(X, ml, nR2, f);

/* Searching */
for (row=0; row < nl; rowt+) {
r=root;
for (colum=0; colum < n2; colum++) {
while ((s=GET_NODE(r, Y[row][colum])) == UNDEFINED) r=CGET_FAIL(r);
r=s;
if ((x=CET_QUTPUT(r)) !'= UNDEFI NED) {
k=a[col um];
while (k>0 && strncnp(X k], x, nR) !'=0) k=f[k];
a[col um] =k+1;
if (k >= nil-1) OQUTPUT(row nil+1, col um-n+1);
}

el se a[col um] =0;

Figure 3.6: The Bird/Baker two-dimensional pattern matching agorithm.

25

Chapter 4

Suffix trees

The suffix tree S(y) of astring y is atrie (see Section 2.6) containing all the suffixes of the string,
and having properties that are described below. This data structure serves as an index on the string: it
provides adirect access to all segments of the string, and gives the positions of al their occurrencesin
the string.

Once the suffix tree of atext y isbuilt, searching for z in y remainsto spell = along abranch of the
tree. If thiswalk is successful the positions of the pattern can be output. Otherwise, = does not occur
iny.

Any trieto represent the suffixes of astring can be used to search it. But the suffix tree has additional
features which imply that itssizeislinear. The suffix tree of y is defined by the following properties:

e al branchesof S(y) arelabelled by al suffixes of y,

e edgesof 5(y) arelabelled by strings,

e internal nodesof S(y) have at least two sons (when y is non empty),

¢ edges outgoing an internal node are labelled by segments starting with different letters,

¢ the above segments are represented by their starting and ending positionsin y.

Moreover, it is assumed that y ends with a symbol occurring nowhere else in it (the dollar sign
is used in examples). This avoids marking nodes, and implies that S(y) has exactly n + 1 leaves.
The other properties then imply that the total size of S(y) is O(n), which makesit possibleto design
a linear-time construction of the trie. The algorithm described in the present section has this time

complexity provided the aphabet is fixed, or with an additional multiplicativefactor logo otherwise.
The algorithm inserts the suffixes of y in the data structure as follows:

T_1 — UNDEFINED;
for i — Oton — 1do

T, — |NSERT(TZ'_1, y[z Loun = 1]),
endfor

Thelast tree T),_1 isthe suffix tree S(y).
We introduce two definitions to explain how the algorithm works:

e head; isthelongest prefix of y[i...n — 1] whichisalso aprefix of y[j ...n — 1] for somej < 7,
e tail; istheword suchthat y[i...n — 1] = head;tail;.
The strategy to insert the :-th suffix in the tree is based on the previous definitions:

26

INSERT(T-1, y[i...n — 1])
locate the node h associated with head; in T;_1, possibly breaking an edge;
add anew edge labelled tail; from h to anew leaf representing suffix y[i...n — 1];
return the modified tree;

The second step of the insertion is performed in constant time. It is thus finding the node % that is
critical for the overall performance of the algorithm. A brute force method to find it consistsin spelling
the current suffix y[i...n — 1] from the root of the tree, giving an O(|head;|) time complexity for
insertion at step ¢, and an O(n?) running timeto built S(y). Adding ‘short-cut’ linksleadsto an overall
O(n) time complexity, although insertion at step 7 is not realized in constant time.

Example 4.1:

The different trees during the construction of the suffix tree of y = CAGATAGAGS. Leaves are black
and labelled by the position of the suffix they represent. Dashed arrows represent the non trivial suffix
links.

09 0,9 19

27

4.1 McCreight algorithm

The clueto get an efficient construction of the suffix tree 5(y) isto add links between nodes of the tree:
they are called suffix links. Their definition relies on the relationship between head;_1 and head;:

if head;_1 isof theformaz (a € Z, z € 2¥),
then z isaprefix of head;.

In the suffix tree the node associated with z is linked to the node associated with az. The suffix link
creates a short-cut in the tree that helps finding the next head efficiently. To insert the next suffix,
namely head;tail;, in the tree reducesto the insertion of ta:l; from the node associated with head;.
The following property is an invariant of the construction: in 7}, only the node h associated with
head; can fail to have a valid suffix link. This happen when i has just been created at step i. The

28

procedure to find the next head at step « is composed of two main phases:

A Rescanning

Assumethat head;_1 = az (¢ € Z, z € 2*) and let d’ be the associated node.

If the suffix on d’ is defined, it leads to a node d from which the second step starts.

Otherwise, the suffix link on d’ isfound by ‘rescanning’ asfollows. Let ¢’ bethefather of ', and
let w be thelabel of edge (¢, d"). For the ease of the description, assumethat az = avw (it may
happen that ez = w). Thereis a suffix link defined on ¢’ and going to some node ¢ associated
with av. The crucial observation here isthat w is prefix of the label of a branch starting at node
c¢. The agorithm rescans w in thetree: let e be the child of ¢ along that branch, and let p be the
label of edge (¢, e). If |p| < |w| then arecursive rescan of ¢, where w = pq, starts from nodee.
If |p| > |w|, theedge (¢, e) isbroken to insert a new node d; |abels are updated correspondingly.
If |p| = |w|,dissimply settoe.

If the suffix link of d’ is currently undefined, it is set to d.

B Scanning

A downward search startsfrom d to find the node h associated with head;. The search isdictated
by the characters of tail; 1 one at atime from left to right. If necessary anew internal node is
created at the end of the scanning.

After the two phases A and B, the node associated with the new head is known, and the tail of the
current suffix can be inserted in the tree.

To analyse the time complexity of the entire agorithm we mainly have to evaluate the tota time
of all scannings, and the total time of all rescannings. We assume that the alphabet is fixed, so that
branching from a node to one of its sons can be implemented to take constant time. Thus, the time
spent for al scanningsis linear because each letter of y is scanned only once. The same holds true for
rescannings because each step downward (through node e) increases strictly the position of theword w
considered there, and this position never decreases.

An implementation of McCreight’s agorithm is shown in Figure 4.1. The next figures give the
procedures used by the algorithm, and especially procedures RESCAN and SCAN.

29

NCDE M char *y, int n)

{

NODE root, head, tail, d;
char *end, *gammm;

end=y+n;

head=r oot =I NI T(y, n);
tai | =GET_SON(root, *y);

while (--n) {
/* Phase A (rescanning) */
if (head == root) {
d=root; gamma=GET_LABEL(tail) +1;
} else {
gamua=CET_LABEL(tail);
i f (GET_LINK(head) != UNDEFI NED) d=GET_LI NK(head);
el se {
i f (GET_FATHER(head) == root)
d=RESCAN(root, GET_LABEL(head)+1, GET_LENGTH(head)-1);
el se
d=RESCAN(GET_LI NK(GET_FATHER(head)), GET_LABEL(head), GET_LENGTH(head));
PUT_LI NK(head, d);
}
}

/* Phase B: scanning */
head=SCAN(d, &ganmm);

t ai | =ALLOCATE_NODE() ;
PUT_FATHER(tail, head);
PUT LABEL(tail, ganms);
PUT_LENGTH(tail, (int)(end-gamm));
PUT_SON(head, *gamma, tail);

}

return(root);

}

Figure 4.1: Suffix tree construction.

30

NODE | NI T(char *y, int n)

{
NODE r oot, son;

r oot =ALLOCATE_NCDE() ;
son=ALLOCATE_NODE() ;
PUT_FATHER(r oot, UNDEFI NED) ;
PUT_FATHER(son, root);
PUT_SON(root, *y, son);
PUT_LABEL(root, UNDEFI NED);
PUT_LABEL(son, vy);
PUT_LENGTH(root, 0);
PUT_LENGTH(son, n);
return(root);

Figure 4.2: Initialization procedure.

NODE RESCAN(NODE ¢, char *beta, int m
{
while (m> 0 &% m >= GET_LENGTH(GET_SON(c, *beta))) {
c=GET_SON(c, *beta);
m =CGET_LENGTH(c) ;
bet a+=GET_LENGTH(c) ;
}
if (m> 0) return(BREAK EDGE(GET_SON(c, *beta), m);
el se return(c);

}

Figure4.3: The crucial rescan operation.

NODE BREAK_EDGE(NCDE x, int k)

{
NCDE vy;

y=ALLOCATE_NCDE() ;

PUT_FATHER(y, GET_FATHER(X));
PUT_SON(GET_FATHER(x), *GET_LABEL(Xx), V);
PUT_LABEL(y, GET_LABEL(X));
PUT_LENGTH(y, k);

PUT_FATHER(X, Y);

PUT_LABEL(x, GET_LABEL(X) +k);
PUT_LENGTH(x, GET_LENGTH(x) -k);
PUT_SON(y, *CET_LABEL(Xx), Xx);
PUT_LI NK(y, UNDEFI NED) ;
return(y);

Figure 4.4: Breaking an edge.

31

NODE SCAN(NODE d, char **gammm)

{
NODE f ;
int k, |g;
char *s;
while (GET_SON(d, **gamm) != UNDEFI NED) {
f=CGET_SON(d, **gamma);
k=1;
s=GET_LABEL(f) +1;
| g=CET_LENGTH(f);
(*gamma) ++;
while (k <1lg & **gamua == *s) {
(*gamma) ++;
S++;
k++;
}
if (k <1g) return(BREAK EDGE(f, k));
d=f;
(*gamma) ++;
}
return(d);
}

Figure 4.5: The scan operation.

32

Chapter 5

L ongest common subsequence of two
strings

The notion of alongest common subsequence of two stringsiswidely used to comparefiles. Thedi f f
command of UNIX system implement an agorithm based of this notion where lines of the files are
considered symbols. Informally, the result of a comparison gives the minimum number of operations
(insert a symbol, or delete a symbol) to transform one string into the other, which introduces what is
known astheedit distance between the strings (see Chapter 6). The compari son of molecul ar sequences
is basically done with a closed concept, alignment of strings, which consistsin aigning their symbols
on vertical lines. Thisisrelated to an edit distance with the additional operation of substitution.

A subsequence of aword z is obtained by deleting zero or more characters from z. More formally
w[0...7 — 1] is a subsequence of z[0...m — 1] if there exists an increasing sequence of integers
(k;/j=0,...,i— 1) suchthat, for 0 < j < i — 1, w[j] = z[k;]. Wesay that aword isan lcs(z,) if
it is alongest common subsequence of the two words = and y. Note that two strings can have severa
les(z,y). Their (unique) length of denoted by llcs(z, y).

A brute force method to compute an lcs(z, y) would consist in computing all the subsequences of
x, checking if they are subsequences of y and keeping the longest one. Theword = of length m has 2™
subsequences, so this method is impracticable for large values of m.

5.1 Dynamic programming

The commonly-used algorithmto computean lcs(z, y) isatypical application of the dynamic program-
ming method. Decomposing the problem into subproblems produces wide overlaps between them.
So memorization of intermediate values is necessary to avoid recomputing them many times. Using
dynamic programming it is possible to compute an lcs(z, y) in O(mn) time and space. The method
naturally leadsto computing /cs’sfor longer and longer prefixes of thetwo words. Todo so, we consider
the two-dimensional table . defined by:

L[i,0]= L[0,j]=0,for0<i<mand0< j <n, and
Lii+1,j+ 1) =1les(z[0...7],y[0...4]), for0<i<m-—-1land0< j<n-—1

Computingllcs(z,y) = L[m,n] relieson abasic observation that yiel ds the simple recurrence relation
0<t1<m,0< 5 < n):

Lli,jl+1 if 2[1] = ys],

33

voi d LCS(char *x, char *y, int m int n, int L[YSIZE][YSIZE])
{

int i, j;

for (i=0; i <= m i++) L[i][0]=0;
for (j=0; j <=n; i++) L[O][]]=0;

for (i=0; i <m i++)
for (j=0; j < n; j++)
if (x[i] ==y[j]) LIT+1][j+1]=L[i][]]+1;
el se L[i+1][j+1] =MAX(L[i+1][j], L[i][j+1]);
return L[m[n];
}

Figure 5.1: Dynamic programming algorithm to compute lics(z, y) = L[m,n].

The relation is used by the agorithm of Figure 5.1 to compute al the values from L[0, 0] to L[m, n].
The computation obviously take O(mn) time and space. It is afterward possible to trace back a path
from L[m, n] to exhibit an lcs(z, y) (see Figure 5.2).

Example 5.1:

String AGGA isan lcs of z and y.

>l
o
o o0

5.2 Reducing the space: Hirschberg algorithm

If only the length of an lcs(z, y) is needed, it is easy to see that only one row (or one column) of

the table L needs to be stored during the computation. The space complexity becomes O(min(m, n))
(see Figure 5.3). Indeed, Hirschberg algorithm computes an les(z, y) in linear space (and not only the
valuellcs(z, y)) using the previous a gorithm.

L et us define:
L*[i, 5] = Ues((x[i...m — 1DE, (y[j...n — 1)F) and

M(i) = 0rsnja<xn{L[i,J’i] + L[, 5]}

34

char *TRACE(char *x, char *y, int m int n, int L[YSIZE][YSI ZE])
{

int i, j, I;

char z[YSI ZE];

i=m j=n; I=L[m[n];
z[1--]1="\0";
while (i >0 & j > 0) {
i (LLPI0I] == LIi-1][j-1] && x[i-1] == y[j-1]) {
z[I--]=x[i-1];

b--5 1--3
}
else if (L[i-2][j] > L[il[j-12]) i--;
else j--;
}
return(z);

}

Figure 5.2: Production of anlcs(z, y).

voi d LLCS(char *x, char *y, int m int n, int *L)
{

int i, j, last;

for (i=0; i <=n; i++) L[i]=0;
for (i=0; i <m i++) {
| ast =0;
for (j=0; j < n; j++)
if (last > L[j+1]) L[j+1]=l ast;
else if (last < L[j+1]) last=L[]j+1];
else if (x[i] ==y[j]) {

L[] +1] ++;
| ast ++;
}
}
return L[n];
}

Figure 5.3: O(min(m, n))-space agorithm to compute llcs(z, y).

35

voi d LLCS_REVERSE(char *x, char *y, int a, int m int n, int *llcs)

{
int i, j, last;
for (i=0; i <=n; i++) llcs[i]=0;
for (i=m1; i >=a; i--) {
| ast =0;
for (j=n-1; j >=0; j--)
if (last > 1lcs[n-j]) Ilcs[n-j]=last;
else if (last <Ilcs[n-j]) last=llcs[n-j];
else if (x[i] ==y[j]) {
[1cs[n-j]++;
| ast ++;
}
}
}

Figure 5.4: Computation of *.

wheretheword v isthe reverse (or mirrorimage) of theword w. Thealgorithm of Figure 5.4 compute
thetable L*. Thefollowing property is the key observation to compute an lcs(z, y) in linear space:

for0<i < m, M(z)= Llm,n].

In the algorithm shown in Figure 5.5 the integer ¢ is chosen as m/2. After L[i,j] and L*[i, j]
(0 < j < m) are computed, the algorithm finds an integer & such that L[¢, k] + L*[i, k] = L[m,n].
Then, recursively, it computesanics(z[0. . .4, y[0...k])andanles(z[t+1...m—1], y[k+1...n—1]),
and concatenate them to get an les(z, y).

The running time of the Hirschberg algorithm is still O (mn) but the amount of space required for
the computation becomes O(min(m, n)) instead of being quadratic as in Section 5.1.

36

char *H RSCHBERGE char *x, char *y, int m int n)
{

int i, j, k, M L1[YSIZE], L2[YSIZE];

char z[YSI ZE];

strepy(z, "");
if (m==0) return;
else if (m==1) {

for (i=0; i < n; i++)
it (x[0] ==y[i]) {
z[0] =x[O] ;
z[1]1="\0";
return(z);
}
return(z);
}
el se {
i =m 2;
LLCS(i, n, x, vy, L1);
LLCS_ REVERSE(i, m n, X, y, L2);
k=n;
MFLL[n] +L2[O] ;
for (j=n-1; j >=0; j--)
if (L1[j]+L2[n-j] >= M {
MELL[j]1+L2[n-j];
k=j ;
}
strcat(z, H RSCHBERE i, Kk, X, Vy));
strcat(z, H RSCHBERG(mi, n-k, x+i, y+k));
return(z);
}
}

Figure 5.5: O(min(m, n))-space computation of lcs(z, y).

37

Chapter 6

Approximate string matching

Approximate string matching consistsin finding all approximate occurrences of a pattern = of length m
inatext y of length n. Approximate occurrences of = are segmentsof y that are closeto = according to
a specific distance: the distance must be not greater than a given integer k£. We consider two distances,
the Hamming distance and the L evenshtein distance.

With the Hamming distance, the problem isaso caled as the approximate string matching with &
mismatches. With the Levenshtein distance (or edit distance) the problem isknown as the approximate
string matching with £ differences.

The Hamming di stance between twowords w1 and w, of samelength countsthe number of positions
with different characters. The Levenshtein distance between two words w1 and w, (not necessarily of
the same length) is the minima number of differences between the two words. A difference is one of
the following operation:

¢ asubstitution: acharacter of w; correspondsto a different character in w,
¢ aninsertion: acharacter of w4 corresponds to no character in wo,
e adeletion: acharacter of w, corresponds to no character in w;.

The Shift-Or algorithm of the next section is a method that is both very fast in practice and very
easy to implement. It adapts to the two above problems. We initially describe the method for the
exact string-matching problem and then we show how it can handle the cases of & mismatchesand of &
insertions, deletions, or substitutions. The main advantage of the method is that it can adapt to awide
range of problems.

6.1 Shift-Or algorithm

We first present an algorithm to solve the exact string-matching problem using a technique different
from those developped in Chapter 2.

Let R® be abit array of size m. Vectore R? isthe value of the array R after text character y[4] has
been processed (see Figure 6.1). It contains informations about all matches of prefixes of x that end at
position: inthetext (0 < j < m — 1):

o) O ifz[0...4]=yli—7...1],
Ri[]]_{ 1 otherwise.

38

y [[]
[] =[O i=0 [1]
[]z=z0..1] j=1 o
[J=z0...27 j=2 |1
| z j=m-1 E

=
A

Figure 6.1: Meaning of vector kY.
Thevector R?, ; can be computed after R? as follows. For each RY[j] = 0:

o - 0 ifzlj+1=y[i+1],
Riali+1]= { 1 otherwise,

0 _} 0 ifz[0] = y[i + 1],
Rial0l = { 1 otherwise.

If R, ,[m — 1] = 0 then a complete match can be reported.

Thetransition from R? to R?, ; can be computed very fast as follows. For eacha € Z, let 5, bea
bit array of size m such that:

for 0<j<m-—1, S,[j]=0iff 2[j] = a.

The array S, denotes the positions of the character « in the pattern z. Each .5, can be preprocessed
before the search. And the computation of R, ; reduces to two operations, shift and or:

R, 1 = HIFT(R?) OR S,[1).

Example 6.1:
x = GATAA and y = CAGATAAGAGAA

Sp Sc Se ST

1 1 0 1

O 1 1 1

1 1 1 O

O 1 1 1

O 1 1 1
C A GATAAGAGAA
G1 1 01 1 11 01 01 1
A 1 1 1 01 1 1 1 01 0 1
T 1 1 1 1 0 1 1 1 1 1 1 1
A1 1 1 11 01 1 1 1 11
A1 1 1 1 11 01 1 1 11

iit1
y [|]

1
C I~li+t

Figure 6.2: If R%[j] = Othen R 4[j + 1] = 0.

iit1
y [|]

I 1 I
I~ it

Figure 6.3: RY [+ 1] = R[] if y[i + 1] = x[j].

6.2 String matching with & mismatches

The shift-or algorithm easily adapts to support approximate string matching with £ mismatches. To
simplify the description, we shall show the case where at most one substitutionis allowed.

We use arrays R° and S as before, and an additional bit array R* of sizem. Vector R} indicatesall
matches with at most one substitution up to the text character y[:]. Two cases can arise:

e Thereisan exact match onthefirst j charactersof = uptoy[i] (i.e. R9[j] = 0). Then, substituting
y[i + 1] to z[7] creates a match with one substitution (see Figure 6.2). Thus,

RI 4[5+ 1] = RYj).

¢ Thereisamatch with one substitutionon thefirst j characters of z upto y[¢] and y[i + 1] = z[j].
Then, there is amatch with one substitution of the first j + 1 characters of = up to y[: + 1] (see
Figure 6.3). Thus,

. RMj] i yli + 1] = a[j]
1 _ % ’
Rinli+1= { 1 otherwise.

Finally R}, ; can be updated from R} asfollows:

R}, = (HIFT(R}) OR S,1;11) AND SHIFT(R?
+ yli+1]

Example 6.2:
x = GATAA and y = CAGATAAGAGAA
CAGATAAGAGAA
G 00O O0OOO0OOO0OTUO0OTOLTUOoOSTO
A1 010100101 00O0
T 111 101111010
A1 11110111101
A1 11111011110

40

i1+1

y [[]
NI
Figure 6.4: If RY[j] = Othen R} ,[j] = 0.
ii+1
y [[]
I ES
L+ i+t

Figure6.5: RY, ,[j + 1] = R}[j]if y[i + 1] = =[5 + 1].

6.3 String matching with k differences

We show in this section how to adapt the shift-or algorithm to the case of only one insertion, and then
of only one deletion. The method where one insertion, and then where one deletion, isallowed isbased
on the following el ements.

Oneinsertion: R} indicates all matches with at most one insertion up to text character y[q].

R[j] = 0if the first j 4+ 1 characters of = (z]0...;]) match j + 1 symbols of the last j + 2 text
characters up to y[¢].

Array R is maintained as before, and we show how to maintain array R*. Two cases can arise for a
match with at most one insertion on thefirst j + 2 characters of z up to y[: + 1J:

e Thereisan exact match on thefirst j 4+ 1 characters of z (z[0...7]) up to y[]. Then inserting
y[i + 1] creates amatch with oneinsertion up to y[: + 1] (see Figure 6.4). Thus

Riali] = R4,
e There is a match with one insertion on the j + 1 first characters of = up to y[i]. Then if
y[t + 1] = z[j + 1] there is a match with one insertion on the first j 4+ 2 characters of = up to

y[7 + 1] (see Figure 6.5). Thus,

. RMj] ifyli+ 1) = olj+ 1
l . F bl
Ripali+1] = { 1 otherwise.

Finally, R}, , isupdated from R} with the formula:

Ri ;= (HIFT(R}) OR S,;41) AND RY.

41

iit1
y [|]

I
C T-li+1

Figure 6.6: If R, ,[5] = Othen R}, 1[j + 1] = 0.

iit1
y [|]

O
=

Figure6.7: RY ,[j + 1] = R}[j]if y[i + 1] = z[j + 1].

Example 6.3:
x = GATAA and y = CAGATAAGAGAA

CAGATAAGAGAA
G111 1011110101
A1 11101111010
T 11111 0111111
A1 11111011111
A1 11111101111

Onedeletion: We assume now that R} indicatesall possible matches with at most one deletion up to
y[¢]. Again two cases arise:

¢ Thereisan exact matchonthefirst j+ 1 charactersof z (z[0. . . j]) uptoy[i+1] (i.e. R?+1[j] = 0).
Then, deleting z[7] creates a match with one deletion (see Figure 6.6). Thus,

Rilj + 1] = R2,4[j].

e There isamatch with one deletion on the first j characters of = up to y[¢] and y[¢ + 1] = z[j].
Then, there is a match with one deletion on the first j + 1 characters of = up to y[: + 1] (see
Figure 6.7). Thus,

: R[] ify[i+ 1) = 2l + 1]
1 _ 7 L)
Riali+1]= { 1 otherwise.

Finally, R}, , isupdated from R} with the formula

Ri,1 = (HIFT(R}) OR S,.1) AND SHIFT(R?, ;).

42

Example 6.4
x = GATAA and y = CAGATAAGAGAA

CAGATAAGAGAA
G 0O O0OO0OO0OO0OO0OO OO OTUOTGO0OTOoOOGOo
A1 0 0O1 0 O0O0O0OO0TUO0TUPO0
T 111 001 1101 01
A1 1110011111020
A1 11110011111

6.4 Wu-Manber algorithm

We present the approximate string matching with at most £ differences of thetypes: insertion, deletion,
and substitution. We need to maintain & + 1 bit arrays R°, R, ..., R*. Thevector R° is maintained
similarly as in the exact matching case (Section 6.1). The other vector are computed with the formula
(L<j<k) , ,
R = (SHIFT(R!) OR Syiyq)

AND SHIFT(R!}7)

AND SHIFT(R/™Y)

AND RI71,
which can be rewritten into:

R?+1 = (S'“FT(RZ") OR Syli+1]) ,
AND SHIFT(RI;] AND RI™)

AND RI71.
Example 6.5:
z = GATAA and y = CAGATAAGAGAA andk =1
CAGATAAGAGAA
G 00 O O0OOO0OOO0OTUO0OTOLTUOSO
A1 0 0O OOOTUO OO OO OTUOSTO
T 1 11 0 0 01100 0O
A1 11100011100
A1 11110001110

The Wu-Manber algorithm (see Figure 6.8) assumes that the pattern length is no more than the
memory-word size of the machine, which is often the case in applications. The preprocessing phase
takes O(om + km) memory space, and runsintime O(om + k). Thetime complexity of the searching
phaseis O(kn).

43

void WM char *y, char *x, int n, int m int k)
{

unsigned int j, lastl, last2, lim mask, S[ASIZE], R KSIZE];

int i;

/* Preprocessing */

for (i=0; i < ASIZE i++) S[i]="0;

['i m=O0;

for (i=0, j=1; i <m i++ j<<=1) {
SIx[i]]&;
lim=;

}

ime™(1inp>1);

R 0] =70;
for (j=1; j <= k; j++) Rj]I=Rj-1]>>1;

/* Search */
for (i=0; i <n; i++) {
 ast 1=R[0] ;
mask=S[y[i]];
R 0] =(R[0] <<1) | mask;
for (j=1;] <= k; j++) {
last2=R[j];
RIjI=((R[j]<<1l)|nmask) & (last1&R[j-1])<<1) &l ast 1;
| ast 1=I ast 2;

}
if (R[k] < lim OUTPUT(i-m1);

Figure 6.8: Wu-Manber approximate string-matching algorithm.

Chapter 7

Text compression

In this section we are interested in algorithm that compresstexts. Thisserves both to save storage place
and to save transmissiontime. We shall consider that the uncompressed text isstored in afile. Theaim
of agorithmsis to produce another file containing the compressed version of the same text. Methods
of this section work with no loss of information, so that decompressing the compressed text restores
exactly the original text.

We apply two strategiesto design the algorithms. The first strategy is a statistical method that takes
into account the frequencies of symbolsto built a uniquely decipherable code optimal with respect to
the compression. The code contains new codewords for the symbols occurring in the text. In this
method fixed-length blocks of bits are encoded by different codewords. A contrario the second strategy
encodes variable-length segments of the text. To say it simply, the algorithm, while scanning the text,
replaces some already read segments by just a pointer onto their first occurrences.

7.1 Huffman coding

Huffman method is an optimal statistical coding. It transforms the original code used for characters
of the text (ASCII code on 8 bits, for instance). Coding the text is just replacing each occurrences of
characters by their new codewords. The method works for any length of blocks (not only 8 bit) but the
running time grows exponentially with this length.

Huffman a gorithm uses the notion of prefix code. A prefix code is a set of words containing no
word that is a prefix of another word of the set. The advantage of such a code is that decoding is
immediate. Moreover, it can be proved that thistype of code do not weaken the compression.

A prefix code on the binary alphabet {0, 1} can be represented by atrie (see Section 2.6) that isa
binary tree. In the present method codes are complete: they correspond to completetrie (internal nodes
have exactly two children). The leaves are labelled by the original characters, edges are labelled by 0
or 1, and labels of branches are the words of the code. The condition on the code imply that codewords
are identified with leaves only. We adopt the convention that, from ainternal node, the edge to its left
son islabelled by 0, and the edge to itsright son is |abelled by 1.

In the model where characters of thetext are given new codewords, Huffman a gorithm built acode
that is optimal in the sense that the compression is the best possible (the length of the compressed text
isminimum). The code depends on the text, and more precisely on the frequencies of each character in
the uncompressed text. The most frequent characters are given short codewordswhiletheleast frequent
symbols have longer codewords.

45

int COUNT(FILE *fin, CODE *code)
{

int c;

while ((c=getc(fin)) != EOF) code[c].freq++;
code[END] . freqg=1;
}

Figure 7.1: Counts the character frequencies.

7.1.1 Encoding

The coding algorithm is composed of three steps: count of character frequencies, construction of the
prefix code, encoding of the text.

Thefirst step consistsin counting the number of occurrences of each character of the original text
(see Figure 7.1). We use a specia end marker (denoted by END), which (virtually) appears only once
at the end of the text. It is possibleto skip thisfirst step if fixed statistics on the alphabet are used. In
this case the method is optimal according to the statistics, but not necessarily for the specific text.

The second step of the agorithm builds the tree of a prefix code using the character frequency
Jreq(a) of each character « in the following way:

¢ Creste aroot-treet for each character a with weight(t) = freq(a),
¢ Repest

— Sdect the two least frequent trees t1 and ¢,
— Createanew treetz withleft sontq, right sont, and weight(t3) = weight(t1)+weight(ty)

e Until it remains only one tree.

Thetreeiscontructed by the agorithm, the only tree remaining at the end of the procedure, isthe coding
tree.

Intheimplementation of the above scheme, apriority queueisused toidentify thetwo least frequent
trees (see Figures 7.2 and 7.3). After thetreeisbuilt, it is possibleto recover the codewords associated
with characters by a simple depth-first-search of the tree (see Figure 7.4).

In the third step, the original text is encoded. Since the code depends on the original text, in order
to be able to decode the compressed text, the coding tree must be stored with the compressed text.
Again thisis done via a depth-first-search of the tree. Each time an internal nodeis encountered a0 is
produced. When aleaf isencountered a1 is produced followed by the ASCII code of the corresponding
character on 9 bits (so that the end marker can be equal to 256 if all the ASCII characters are used in
theoriginal text). This part of the encoding is shownin Figure 7.5.

Encoding of the original text is realized by the algorithm of Figure 7.6. Bits are written 8 by 8in
the compressed file using both a buffer (buf f er) and acounter (bi t s2go). Each timethe counter is
equal to 8, the corresponding byteiswritten (see Figures 7.7 and 7.8). Sincethe total number of bitsis
not necessarily a multiple of 8, some bits may have to be produced at the end (see Figure 7.9).

All the preceding steps are composed to give a complete encoding program, which is given in
Figure 7.11.

46

i nt BU LD HEAP(CODE *code, PRI ORI TY_QUEUE queue)
{

int i, size;

NCDE node;

si ze=0;
for (i=0; i <= END;, i++)
if (code[i].freq !=0) {
node=ALLOCATE_NCDE() ;
PUT_VEI GHT(node, code[i].freq);
PUT_LABEL(node, i);
PUT_LEFT(node, NULL);
PUT_RI GHT(node, NULL);
HEAP_| NSERT(queue, node);
Si ze++;
}

return(size);

}

Figure 7.2: Buildsthe priority queue of trees.

NODE BUI LD_TREE(PRI ORI TY_QUEUE queue, int size)

{
NCDE root, |eftnode, rightnode;

while (size > 1) {
| ef t node=HEAP_EXTRACT_M N(queue) ;
ri ght node=HEAP_EXTRACT_M N(queue) ;
r oot =ALLOCATE_NODE() ;
PUT_WEI GHT(r oot , GET_WEI GHT(I| ef t node) +GET_WEI GHT(ri ght node)) ;
PUT_LEFT(root, |eftnode);
PUT_RI GHT(root, rightnode);
HEAP_| NSERT(queue, root);
si ze--;
}

return(root);

}

Figure 7.3: Buildsthe coding tree.

47

voi d BU LD_CODE(NCDE root, CODE *code, int |ength)
{

static char tenp[ASI ZE+1];

int c;

if (GET_LEFT(root) !'= NULL) {
t enp[| engt h] =0;
BU LD _CODE(GET_LEFT(root), code, |ength+l);
tenp[| engt h] =1;
BUI LD CODE(GET_RI GHT(root), code, |ength+1);

}

el se {
c=CET_LABEL(root);
code[c] . codeword=(char *)nall oc(l ength);
code[c] .| g=l engt h;
strncpy(code[c].codeword, tenp, |ength);

}

}

Figure 7.4: Builds the character codes by a depth-first-search of the coding tree.

voi d CODE_TREE(FI LE *fout, NODE root)
{
if (GET_LEFT(root) !'= NULL) {
SEND BI T(fout, 0);
CCDE_TREE(fout, GET_LEFT(root));
CODE_TREE(fout, GET_RIGHT(root));
}
el se {
SEND_BI T(fout, 1);
ASCI | 2Bl TS(fout, CET_LABEL(root));
}
}

Figure 7.5: Memorizes the coding tree in the compressed file.

void CODE _TEXT(FILE *fin, FILE *fout)
{

int c, i;

rew nd(fin);
while ((c=getc(fin)) != EOF)
for (i=0; i < code[c].lg; i++)
SEND BI T(fout, code[c].codeword[i]);
for (i=0; i < code[END].lg; i++)
SEND BI T(fout, code[END].codeword[i]);

Figure 7.6: Encodes the characters in the compressed file.

48

voi d SEND BI T(FILE *fout, int bit)
{

buf f er >>=1;
if (bit) buffer|=0x80;
bi t s2go++;
if (bits2go == 8) {
put c(buffer, fout);
bi t s2go=0
}
}

Figure 7.7: Sends one bit in the compressed file.

int ASCII2BI TS(FILE *fout, int n)
{

int i;

for (i=8; i>=0; i--) SEND BIT(fout, (n>>i)&l);
}

Figure 7.8: Encodesn on 9 bits.

voi d SEND LAST_BI TS(FI LE *fout)

{
i f (bits2go) putc(buffer>>(8-bits2go), fout);

}

Figure 7.9: Outputsafina byteif necessary.

voi d I NI T(CODE *code)
{
int i;
for (i=0; i < ASIZE; i++) {

code[i].freq=code[i] .| g=0;
code[i].codewor d=NULL;

Figure 7.10: Initializes the array code.

49

#defi ne ASI ZE 255
#define END (ASI ZE+1) /* code of ECF */

t ypedef struct {
int freq, |g;
char *codewor d;
} CODE;

int buffer;
i nt bits2go;

voi d CODI NG char *fichin, char *fichout)
{

FILE *fin, *fout;

int size;

PRI ORI TY_QUEUE queue;

NCDE r oot ;

CCDE code[ASI ZE+1] ;

if ((fin=fopen(fichin, "r")) == NULL) exit(0);
if ((fout=fopen(fichout, "w')) == NULL) exit(0);
I NI T(code);

COUNT(fin, code);

si ze=BUl LD _HEAP(code, queue);

root =BUI LD _TREE(queue, si ze);

BUI LD _CODE(r oot, code, 0);

buf f er =bi t s2go=0;

CODE_TREE(fout, root);

CODE_TEXT(fin, fout);

SEND LAST BI TS(fout);

fclose(fin);

fcl ose(fout);

Figure 7.11: Complete function for Huffman coding.

50

Example 7.1:

y = CAGATAAGAGAA

Length: 12*8=96 hits (if an 8-bit code is assumed)
A|C|G|T|END
6|1({3|1] 1
The different steps during the construction of the coding tree:

R 0 @0 @ A

character frequencies:

C T
(3 ®® &, ©®
O 2 6 A . ©® A
END (1) (D) (D (2) G
C T END (1) (1)
C T

A C G T END

character codewords: 110010 | 01 | 0011 | 000

Tree code: 0001binary(END,9)01binary(C9)1 binary(T,9)1binary(G9)1binary(A,9)
thus: 0001 100000000 01 001000011 1 001010100 1 001000111 1 001000001
Length: 54

Textcode: 0010 1 01 1 0011 1 1 01 1 01 1 1 000
Length: 24

Total length: 78

The construction of the tree takes O(o log o) if the priority queue isimplemented efficiently. The
rest of the encoding process runs in time linear in the sum of the sizes of the original and compressed
texts.

51

voi d REBU LD TREE(FI LE *fin, NODE root)

{
NCDE | ef t node, ri ght node;

if (READ BIT(fin) == 1) { /* leaf */
PUT_LEFT(root, NULL);
PUT_RI GHT(root, NULL);
PUT_LABEL(root, BITS2ASCII(fin));
}
el se {
| ef t node=ALLOCATE_NODE() ;
PUT_LEFT(root, |eftnode);
REBU LD TREE(fin, |eftnode);
ri ght node=ALLOCATE_NODE() ;
PUT_RI GHT(root, rightnode);
REBUI LD TREE(fin, rightnode);
}
}

Figure 7.12: Rebuilds the tree read from the compressed file.

int Bl TS2ASCI | (FI LE *fi n)
{

int i, value;

val ue=0;

for (i=8; i >=0; i--) value=val ue<<1+READ BI T(fin);
return(val ue);

}

Figure 7.13: Reads the next 9 bitsin the compressed file and returns the corresponding value.

52

voi d DECODE_TEXT(FILE *fin, FILE *fout, NCDE root)

{
NCDE node;

node=r oot ;
while (1) {
if (GET_LEFT(node) == NULL)
if (GET_LABEL(node) !'= END) {
put c(GET_LABEL(node), fout);
node=r oot ;

el se break;
else if (READ BIT(fin) == 1) node=CGET_RI GHT(node);
el se node=GET_LEFT(node);

Figure 7.14: Reads the compressed text and produces the uncompressed text.

7.1.2 Decoding

Decoding a file containing a text compressed by Huffman agorithm is a mere programming exercise.
First the coding tree is rebuild by the algorithm of Figure 7.12. It uses a function to decode a integer
written on 9 bits (see Figure 7.13). Then, the uncompressed text isrecovered by parsing the compressed
text with the coding tree. The process begins at the root of the coding tree, and follows a left branch
when a0 is read or aright branch when a1 isread. When aleaf is encountered, the corresponding
character (in fact the original codeword of it) is produced and the parsing phase resumes at the root of
the tree. The parsing ends when the codeword of the end marker is read. The decoding of the text is
presented in Figure 7.14. Again in this algorithm the bits are read with the use of a buffer (buf f er)
and acounter (bi t s_i n_st ock). A byteisread in the compressed file only if the counter is equal to
zero (see Figure 7.15).

The complete decoding program is given in Figure 7.16. It cals the preceding functions. The
running time of the decoding program is linear in the sum of the sizes of the texts it manipulates.

7.2 LZW Compression

Ziv and Lempd designed a compression method using encoding segments. These segments are stored
in a dictionary that is built during the compression process. When a segment of the dictionary is
encountered later while scanning the original text it is substituted by itsindex in the dictionary. In the
model where portions of the text are replaced by pointers on previous occurrences, the Ziv-Lempel
compression scheme can be proved to be asymptotically optimal (on large enough texts satisfying good
conditions on the probality distribution of symbols).

The dictionary is the central point of the algorithm. It has the property to be prefix-closed (every
prefix of a word of the dictionary is in the dictionary), so that it can be implemented as a tree.
Furthermore, a hashing technique makes its implementation efficient. The version described in this
section is called Lempel-Ziv-Welsh method after several improvement introduced by Welsh. The
algorithmisimplemented by the conpr ess command existing under the UNIX operating system.

53

i nt READ BI T(FI LE *fin)

{
int bit;

if (bits_in_stock == 0) {
buffer=getc(fin);
bits in_stock=8;
}
bi t =buf f er &1;
buf f er >>=1;
bits_in_stock--;
return(bit);

Figure 7.15: Reads the next bit from the compressed file.

int buffer;
int bits_in_stock;

voi d DECCDI NG char *fichin, char *fichout)
{

FILE *fin, *fout;

NCDE r oot ;

if ((fin=fopen(fichin, "r")) == NULL) exit(0);
if ((fout=fopen(fichout, "w')) == NULL) exit(0);
I NI T(code);
buffer=bits_in_stock=0;

r oot =ALLOCATE_NCDE() ;

REBUI LD_TREE(fin, root);
UNCOVPRESS(fin, fout, root);
fclose(fin);

fcl ose(fout);

Figure 7.16: Complete function for decoding.

7.2.1 Compression method

We describe the scheme of the compression method. The dictionary isinitialized with all the characters
of the alphabet. The current situation iswhen we have just read a segment w of thetext. Let a bethe
next symbol (just following w). Then we proceed that way:

e If wa isnot in the dictionary, we write the index of w to the output file, and add wa to the
dictionary. We then reset w to ¢ and process the next symbol (following a).
¢ If wa isinthedictionary we process the next symbol, with segment wa instead of w.
Initially w isthefirst letter of the source text.

Example 7.2:
y = CAGTAAGAGAA

CAGTAAGAGAA w written added
1 C 67 CA, 257
1 A 65 AG 258
1 G 11 GT, 259
1 T 84 TA, 260
1 A 65 AA 261
1 A
1 AG 258 AGA 262
1 A
1 AG
1 AGA 262 AGAA 262
T A

7.2.2 Decompression method

The decompression method is symmetric to the compression algorithm. The dictionary is recovered
while the decompression process runs. It is basically donein this way:

¢ read acode c in the compressed file,
¢ write on the output file the segment w which hasindex ¢ in the dictionary,
¢ add to the dictionary the word wa where a isthefirst letter of the next segment.

In this scheme, a problem occursiif the next segment is the word which isbeing built. Thisarises only
if the text contains a segment azazax for which az belongsto the dictionary but aza does not. During
the compression process the index of az is written into the compressed file, and aza is added to the
dictionary. Next, aza isread and itsindex is written into the file. During the decompression process
theindex of aza isread while the word «z has not been completed yet: the segment ¢z isnot aready
in the dictionary. However, since thisis the unique case where the situation arises, the segment aza is
recovered taking the last segment « > added to the dictionary concatenated with itsfirst letter a.

55

unsi gned int GET_SON(int father, int son)
{

i nt index, offset;

i ndex=(son<<(BI TS-8)) " fat her;
if (index == 0) offset=1;
el se of f set =TABLE_SI ZE- i ndex;
while (1) {
if (dict[index].code== UNDEFI NED) return(index);
if (dict[index].father == father &&
di ct[i ndex].character == (char)son) return(index);
i ndex- =of f set;
if (index < 0) index+=TABLE_SI ZE;

Figure 7.17: Hashing function to access the dictionary.

Example 7.3:
decoding: 67, 65, 71, 84, 65, 258, 262, 65

read written added

67 C

65 A CA, 257
71 G AG, 258
84 T GT, 259
65 A TA, 260
258 AG AA, 261

262 AGA AGA 262
65 A AGAA, 263

7.2.3 Implementation

For the compression agorithm shown in Figure 7.18, the dictionary is stored in a table declared as
follows:

struct dictionary {
int code, father;
char character;

} dict[TABLE SI ZE];

The table is accessed with a hashing function (see Figure 7.17) in order to have afast access to the son
of anode.

For the decompression agorithm, no hashing technique is necessary. Having the index of the
next segment, a bottom-up walk in the trie underlying the dictionary produces the mirror image of the
segment. A stack is then used to reverse it (see Figure 7.19). The bottom-up walk follows the parent
links of the data structure. The decompression agorithmis given Figure 7.20.

56

voi d COMPRESS(fin, fout)
FILE *fin, *fout;
{

i nt next_code, character, string_code;
unsi gned int index, i

PREPARE_W\RI TE() ;
next code=FI RST_CCDE
for (i=0; i < TABLE_SIZE; i++) dict[i].code=UNDEFI NED
if ((string_code=getc(fin)) == EOF) string_code=END
while ((character=getc(fin)) != EOF) {
i ndex=GET_SON(string_code, character);
if (dict[index].code != UNDEFI NED)
string_code=di ct[index]. code;
el se {
i f (next_code <= MAX_CODE) ({
di ct[i ndex] . code=next _code++;
di ct[i ndex] . father=string_code;
di ct[i ndex] . character=(char)character
}
QUTPUT _BI TS(fout, string_code);
string_code=char act er;
}
}
QUTPUT _BI TS(fout, string_code);
QUTPUT_BI TS(fout, END);
SEND_LAST_BI TS(fout);

}

Figure 7.18: LZW compression algorithm.

unsi gned i nt DECODE_STRI NE count, code)
unsi gned int count, code;

{

whil e (code > 255) {
decode_st ack[count ++] =di ct [code] . charact er;
code=di ct[code] . f at her

}

decode_st ack[count ++] =(char) code;
return(count);

}

Figure 7.19: Bottom-up search in the coding tree.

57

voi d UNCOWPRESS(fin, fout)
FILE *fin, *fout;
{
unsi gned i nt next_code, new code, ol d_code, count;
i nt character;

PREPARE_READ() ;
next code=FI RST_CCDE
ol d_code=I NPUT_BI TS(fin, BITS);
if (old_code == END) return;
charact er=ol d_code;
put c(ol d_code, fout);
while ((new_code=I NPUT_BI TS(fin, BITS)) != END) ({
if (new_code >= next_code) {
decode_st ack[0] =(char) character;
count =DECODE_STRI N& 1, ol d_code);
}
el se count =DECODE_STRI NG 0, new _code);
char act er =decode_st ack[count - 1] ;
while (count > 0) putc(decode_stack[--count], fout);
i f (next_code <= MAX_CODE) ({
di ct[next _code] . f at her =ol d_code;
di ct[next _code]. charact er=(char)character
next code++;

}

ol d_code=new code;

Figure 7.20: LZW decompression agorithm.

58

Sourcetext French Csources Alphabet Random
sizeinbytes 62816 684497 530000 70000

Huffman 5327% 62.10% 72.65% 55.58%
Ziv-Lempel 41.46% 34.16% 213% 63.60%
Factor 4743% 31.86% 0.09% 73.74%

Figure 7.21: Sizes of texts compressed with three a gorithms.

The Ziv-Lempel compression and decompression agorithms run in time linear in the sizes of the
files provided a good hashing technique is chosen. It is very fast in practice. Its main advantage
compared to Huffman coding isthat it captures long repeated segments in the sourcefile.

7.3 Experimental results

The table of Figure 7.21 contains a sample of experimental results showing the behaviour of
compression algorithms on different types of texts. The tableis extracted from (Zipstein, 1992).

The source files are: French text, C sources, Alphabet, and Random. Alphabet is afile containg
arepetition of the line abc...zABC...Z. Random is a file where the symbols have been generated
randomly, al with the same probability and independently of each others.

The compression agorithms reported in the table are: Huffman algorithm of Section 7.1, Ziv-
Lempel algorithm of Section 7.2, and a third algorithm called Factor. This latter agorithm encodes
segments as Ziv-Lempel agorithm does. But the segments are taken among all segments aready
encountered in the text before the current position. The method gives usually better compression ratio
but is more difficult to implement.

The table of Figure 7.21 gives in percentage the sizes of compressed files. Results obtained by
Ziv-Lempel and Factor algorithmsare similar. Huffman coding givesthebest result for the Randomfile.
Finally, experience shows that exact compression methods often reduce the size of datato 30%—50%.

59

Chapter 8

Research | ssuesand Summary

The string searching algorithm by hashing has been introduced by Harrison (1971), and later fully
analysed by Karp and Rabin (1987).

The linear-time string-matching algorithm of Knuth, Morris, and Pratt is from 1976. It can be
proved that, during the search, a character of the text is compared to a character of the pattern no more
than loge (|| + 1) (Where ® isthe golden ratio (1 + v/5)/2). Simon (1993) gives an algorithm similar
to the previous one but with a delay bounded by the size of the alphabet (of the pattern). Hancart
(1993) proves that the delay of Simon’s algorithm is even no more than 1 + log, |z|. He also proves
that thisis optimal among algorithms searching the text through awindow of size 1.

Galil (1981) givesagenera criterion to transform searching agorithms of that type into real-time
algorithm.

Boyer-Moore algorithm has been designed by Boyer and Moore (1977). The first proof on the
linearity of the algorithm when restricted to the search of thefirst occurrence of the patternisin (Knuth,
Morris and Pratt, 1977). Cole (1995) proves that the maximum number of symbol comparisons is
bounded by 3=, and that thisbound is tight.

Knuth, Morris, and Pratt (1977) consider avariant of Boyer-Moore algorithm in which all previous
matches inside the current window are memorized. Each window configuration becomes the state of
what is called the Boyer-Moore automaton. It isstill unknown whether the maximum number of states
of the automaton is polynomial or not.

Severd variants of Boyer-Moore algorithm avoid the quadratic behaviour when searching for al
occurrences of the pattern. Among the more efficient in term of number of symbol comparisons are:
the agorithm of Apostolico and Giancarlo (1986), Turbo-BM algorithm by Crochemore et aii (1992)
(the two algorithms are analysed in Lecroq, 1995), and the algorithm of Colussi (1994).

The general bound on the expected time complexity of string matching is O(|y| log|z|/|z|). The
probabilistic analysis of asimplified version of BM algorithm similar to the Quick Search agorithm of
Sunday (1990) described in the report have been studied by severa authors.

String searching can be solved by a linear-time algorithm requiring only a constant amount of
memory in addition to the pattern and the (window on the) text. This can proved by different techniques
presented in (Crochemore and Rytter, 1994).

It isknown that any string searching algorithm, working with symbol comparisons, makes at |east
n+ %(n —m) comparisonsin the worst case (see Cole et al. 1995). Some string searching algorithms
make |ess than 2n comparisons at search phase. The presently-known upper bound on the problem is

8

n+ W(n —m), but with aquadratic-time preprocessing step (Coleet al., 1995). With alinear-time

preprocessing step, the current upper bound is n + %(n — m) by Breslauer and Galil (1993).
Except in few cases (patterns of length 3, for example), lower and upper bound do not meet. So, the

60

problem of the exact complexity of string searching is open.

The Aho-Corasick agorithm is from (Aho and Corasick, 1975). It isimplemented by the “fgrep”
command under the UNIX operating system. Commentz-Walter (1979) has designed an extension of
Boyer-Moore algorithm to severa patterns. It isfully described in (Aho, 1990).

On general aphabets the two-dimensional pattern matching can be solved in linear time while the
running time of Bird/Baker algorithm has an additional logo factor. It is still unknown whether the
problem can be solved by an a gorithm working simultaneously in linear time and using only a constant
amount of memory space (see Crochemore et ., 1994).

The suffix tree construction of Chapter 4isby McCreight (1976). Other data structuresto represent
indexesontext filesare: direct acyclic word graph (Blumer et a., 1985), suffix automata (Crochemore,
1986), and suffix arrays (Myers and Manber, 1993). All these techniques are presented in (Crochemore
and Rytter, 1994).

All thesedatastructuresimplement full indexeswhile applicationssometimesneed only uncomplete
indexes. The design of compact indexesis still unsolved.

Hirchsberg (1975) presents the computation of the LCSin linear space. Thisisan important result
because the algorithm is used on large sequences. The quadratic time complexity of the algorithm to
compute the Levenstein distance is a bottleneck in practical string comparison for the same reason.

Theapproximatestring searchingisalively domain of research. Itincludesfor instancethenotion of
regular expressions to represent sets of strings. Algorithms based on regular expression are commonly
found in book related to compiling techniques. The agorithms of Chapter 6 are by Baeza-Yates and
Gonnet (1992), and Wu and Manber (1992).

The statistical compression algorithm of Huffman (1951) has a dynamic version where symbol
countingisdoneat coding time. The codingtreeisused to encode the next character and simultaneously
updated. At decoding time asymmetrical process reconstructs the same tree, so, the tree does not need
to be stored with the compressed text. The command conpact of UNIX implementsthis version.

Severd variants of the Ziv and Lempel agorithm exist. The reader can refer to the book of Bell,
Cleary, and Witten (1990) for a discussion on them. The book of Nelson (1992) present practical
implementations of various compression a gorithms.

61

Chapter 9

Defining Terms

Border: A word u € ¥* isasegment of aword w € * if w is both a prefix and a suffix of w (there
exist twowords v, z € Z* such that w = vu = wz). The common length of » and = isaperiod of w.
Edit distance: The metric distance between two stringsthat counts the minimum number of insertions
and deletions of symbolsto transform one string into the other.

Hamming distance: The metric distance between two strings of same length that counts the number
of mismatches.

Levenshtein distance: The metric distance between two strings that counts the minimum number of
insertions, deletions, and substitutions of symbolsto transform one string into the other.

Occurrence: An occurrence of aword u € ¢*, of length m, appearsinaword w € Z*, of length n, at
position ¢ if: for0 < k£ < m — 1, u[k] = w[i + k].

Prefix: A wordu € ¥* isaprefix of aword w € ¥* if w = uz for some z € Z*.

Prefix code: Set of words such that no word of the set is a prefix of another word contained in the set.
A prefix code is represented by a coding tree.

Segment: A word « € Z* isasegment of aword w € X if w occurs in w (See occurrence), i.e.
w = vuz fortwowords v, z € *. (u isalso referred to as afactor or a subword of w)

Subsequence: A word » € ¥* isasubsequence of aword w € * if it isobtained form w by deleting
zero or more symbols that need not be consecutive. (u is also referred to as a subword of w, with a
possi ble confusion with the notion of segment).

Suffix: A word u € ¥* isasuffix of aword w € Z* if w = vu for somewv € ¥*.

Suffix tree: Trie containing all the suffixes of aword.

Trie: Tree which edges are |abelled by letters or words.

62

Chapter 10

References

Aho, A.V. 1990. Algorithms for finding patterns in strings. In Handbook of Theoretical Computer
Science, vol A, Algorithmsand complexity, ed. J. van Leeuwen, p 255-300. Elsevier, Amsterdam.

Aho, A.V., and Corasick, M. 1975. Efficient string matching: an aid to bibliographic search. Comm.
ACM. 18(6):333-340.

Baeza-Yates, RA., and Gonnet, G.H. 1992. A new approach to text searching. Comm. ACM.
35(10):74-82.

Baker, T.P. 1978. A technique for extending rapid exact-match string matching to arrays of more than
onedimension. SSAM J. Comput. 7(4):533-541.

Bell, T.C., Cleary, J.G., and Witten, I1.H. 1990. Text compression, Prentice Hall, Englewood Cliffs,
New Jersey.

Bird, R.S. 1977. Two-dimensional pattern matching. Inf. Process. Lett. 6(5):168-170.

Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., Chen, M.T., and Seiferas, J. 1985 The smallest
automaton recognizing the subwords of atext. Theoret. Comput. Sci. 40:31-55.

Boyer, R.S,, and Moore, J.S. 1977. A fast string searching algorithm. Comm. ACM. 20:762—772.

Breslauer, D., and Galil, Z. 1993. Efficient comparison based string matching. J. Complexity. 9(3):339—
365.

Breslauer, D., Coluss, L., and Toniolo, L. 1993. Tight comparison boundsfor thestring prefix matching
problem. Inf. Process. Lett. 47(1):51-57.

Cole, R. 1994. Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm. SIAM
J. Comput. 23(5):1075-1091.

Cole, R., Hariharan, R., Zwick, U., and Paterson, M.S. 1995. Tighter lower bounds on the exact
complexity of string matching. SAM J. Comput. 24(1):30-45.

Colussi, L. 1994. Fastest pattern matching in strings. J. Algorithms. 16(2):163-189.
Crochemore, M. 1986. Transducers and repetitions. Theoret. Comput. Sci. 45(1):63-86.
Crochemore, M., and Rytter, W. 1994. Text Algorithms, Oxford University Press.

Galil, Z. 1981. String matching inred time. J. ACM. 28(1):134-149.

Hancart, C. 1993. On Simon’s string searching algorithm. Inf. Process. Lett. 47:95-99.

Hirchsberg, D.S. 1975. A linear space agorithm for computing maximal common subsequences.
Comm. ACM. 18(6):341-343.

63

Hume, A., Sunday, D.M. 1991. Fast string searching. Software—Practiceand Experience. 21(11):1221—
1248.

Karp, R.M., Rabin, M.O. 1987. Efficient randomized pattern-matching algorithms. 1BM J. Res. Dev.
31(2):249-260.

Knuth, D.E., Morris J, JH., Pratt, V.R. 1977. Fast pattern matching in strings. SAM J.Comput.
6(1):323-350.

Lecrog, T. 1995. Experimental results on string-matching algorithms. To appear in Software - Practice
& Experience.

McCreight, E.M. 1976. A space-economical suffix tree construction algorithm. J. Algorithms.
23(2):262-272.

Manber, U., Myers, G. 1993. Suffix arrays: anew method for on-line string searches. SAM J. Comput.
22(5):935-948.

Nelson, M. 1992. The data compression book, M& T Books.

Simon, 1. 1993. String matching algorithms and automata. In First American Workshop on String
Processing, ed. Baeza-Yates and Ziviani, p 151-157. Universidade Federal de Minas Gerais.

Stephen, G.A. 1994. String Searching Algorithms, World Scientific.

Sunday, D.M. 1990. A very fast substring search algorithm. Comm. ACM. 33(8):132-142.

Welch, T. 1984. A technique for high-performance data compression. |EEE Computer. 17(6):8-19.
Wu, S., Manber, U. 1992. Fast text searching allowing errors. Comm. ACM. 35(10):83-91.
Zipstein, M. 1992. Data compression with factor automata. Theoret. Comput. Sci. 92(1):213-221

Zhu, RF, Takaoka, T. 1989. A technique for two-dimensiona pattern matching. Comm. ACM.
32(9):1110-1120.

Chapter 11

Further Information

Problems and agorithms presented in the report are just a sample of questions related to pattern
matching. They sharein common the forma methods used to design solutionsand efficient algorithms.
A wider panoramaof agorithmson texts may be found in few books such as:

e Bdl T.C, Cleary J.G., Witten |.H., 1990. Text Compression, Prentice Hall.

¢ Crochemore M., Rytter, W. 1994. Text algorithms, Oxford University Press.

¢ Nelson, M. 1992. The data compression book, M& T Books.

e Stephen G.A., 1994. String searching, World Scientific Press.

Research papers in pattern matching are disseminated in few journals, anong which are: Commu-
nications of the ACM, Journal of the ACM, Theoretical Computer Science, Algorithmica, Journal of

Algorithms, SI/AM Journal on Computing.
Finally, two main annual conferences present the latest advances of thisfield of research:

¢ Combinatorial Pattern Matching, which started in 1990 and was held in Paris (France), London
(England), Tucson (Arizona), Padova (Italy), Asilomar (California), Helsinki (Finland).

¢ Data Compression Conference, which isregularly held at Snowbird.

But general conferencesin computer science often have sessionsdevoted to pattern matching al gorithms.

65

