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Tracing the first four decades in the life  
of suffix trees, their many incarnations,  
and their applications.

BY ALBERTO APOSTOLICO, MAXIME CROCHEMORE,  
MARTIN FARACH-COLTON, ZVI GALIL, AND S. MUTHUKRISHNAN

W H E N  W I L L I A M  L E G R A N D  finally decrypted the string, 
it did not seem to make much more sense than it 
did before.

53‡‡‡305))6*,48264‡.)4z);806”,48†8P60))85;1‡
(;:‡*8†83(88)5*†,46(;88*96*?;8)* ‡ (;485);5*†2:* ‡
(;4956*2(5*Ñ4)8P8*;4069285);)6‡8)4‡‡;1(‡9;48081;8:
8‡1;4885;4)485†528806*81(ddag9;48;(88;4(‡?34;
48)4‡;161;:188; ‡?;

The decoded message read: “A good glass in the 
bishop’s hostel in the devil’s seat forty-one degrees 
and thirteen minutes northeast and by north main 
branch seventh limb east side shoot from the left eye 
of the death’s-head a bee line from the tree through 
the shot fifty feet out.” But at least it did sound more 
like natural language, and eventually guided the 
main character of Edgar Allan Poe’s “The Gold-Bug”36 
to discover the treasure he had been after. Legrand 
solved a substitution cipher using symbol frequencies. 

He first looked for the most frequent 
symbol and changed it into the most 
frequent letter of English, then simi-
larly inferred the most frequent word, 
then punctuation marks, and so on. 

Both before and after 1843, the 
natural impulse when faced with 
some mysterious message has been 
to count frequencies of individual to-
kens or subassemblies in search of a 
clue. Perhaps one of the most intense 
and fascinating subjects for this kind 
of scrutiny have been biosequences. 
As soon as some such sequences be-
came available, statistical analysts 
tried to link characters or blocks of 
characters to relevant biological func-
tions. With the early examples of 
whole genomes emerging in the mid-
1990s, it seemed natural to count the 
occurrences of all blocks of size 1, 2, 
and so on, up to any desired length, 
looking for statistical characteriza-
tions of coding regions, promoter re-
gions, among others.

This article is not about cryptogra-
phy. It is about a data structure and 
its variants, and the many surprising 
and useful features it carries. Among 
these is the fact that, to set up a sta-
tistical table of occurrences for all 
substrings (also called factors), of any 
length, of a text string of n characters, 
it only takes time and space linear in 
the length of the text string. While no-
body would be so foolish as to solve 
the problem by first generating all 
exponentially many possible strings 
and then counting their occurrences 
one by one, a text string may still con-
tain Θ(n2) distinct substrings, so that 
tabulating all of them in linear space, 
never mind linear time, already seems 
puzzling.

40 Years  
of Suffix Trees

We dedicate this article to  
our friend and colleague, 
Alberto Apostolico (1948–2015), 
who passed away on July 20.  
He was a major figure in  
the development of  
algorithms on strings.

http://dx.doi.org/10.1145/2810036
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Their impact on computer science 
and IT at large cannot be overstated. 
Text searching and bioinformatics 
would not be the same without them. 
In 2013, the Combinatorial Pattern 
Matching symposium celebrated the 
40th anniversary of the appearance of 
Weiner’s invention of the suffix tree41 
with a special session entirely dedi-
cated to that event.

History Bits and Pieces
At the dawn of “stringology,” Donald 
Knuth conjectured the problem of 
finding the longest substring com-
mon to two long text sequences of to-
tal length n required (n log n) time. An 
O(n log n)-time had been provided by 
Karp, Miller, and Rosenberg.26 That 
construction was destined to play a 
role in parallel pattern matching, but 
Knuth’s conjecture was short lived: in 
1973, Peter Weiner showed the prob-
lem admitted an elegant linear-time 
solution,41 as long as the alphabet of 
the string was fixed. Such a solution 
was actually a byproduct of a con-
struction he had originally set up for 
a different purpose, that is, identify-
ing any substring of a text file with-
out specifying all of them. In doing 
so, Weiner introduced the notion of 
a textual inverted index that would 
elicit refinements, analyses, and ap-
plications for 40 years and counting, 
a feature hardly shared by any other 
data structure.

Weiner’s original construction pro-
cessed the text file from right to left. 
As each new character was read in, the 
structure, which he called a “bi-tree,” 
would be updated to accommodate 
longer and longer suffixes of the text 
file. Thus, this was an inherently off- 
line construction, since the text had 
to be known in its entirety before the 
construction could begin. Alterna-
tively, one could say the algorithm 
would build the structure for the re-
verse of the text online. About three 
years later, Ed McCreight provided a 
left-to-right algorithm and changed 
the name of the structure to “suffix 
tree,” a name that would stick.32

Let x be a string of n − 1 symbols 
over some alphabet Σ and $ an extra 
character not in Σ. The expanded suf-
fix tree Tx associated with x is a digital 
search tree collecting all suffixes of x$. 
Specifically, Tx is defined as follows.

Over the years, such structures 
have held center stage in text search-
ing, indexing, statistics, and com-
pression as well as in the assembly, 
alignment, and comparison of bi-

osequences. Their range of scope ex-
tends to areas as diverse as detecting 
plagiarism, finding surprising sub-
strings in a text, testing the unique 
decipherability of a code, and more. 

Figure 1. The expanded suffix tree of the string x = abcabcaba.
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Figure 2. Building an expanded suffix tree by insertion of consecutive suffixes (showing 
here the insertion of abcaba$). 
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The insertion of suffix sufi (i = 1, 2, …, n) consists of two phases. In the first phase, we search for sufi  
in Ti – 1. Note the presence of $ guarantees that every suffix will end in a distinct leaf. Therefore, this 
search will end with failure sooner or later. At that point, we will have identified the longest prefix of 
sufi that has a locus (that is, a terminal node) in Ti – 1. Let headi abcab in the example be this prefix 
and α the locus of headi. We can write sufi = headi ∙ taili with taili (a$ in the example) nonempty. In 
the second phase, we need to add to Ti – 1 a path leaving node α and labeled taili. This achieves the 
transformation of Ti – 1 into Ti .
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1.	 Tx has n leaves, labeled from 1 to n.
2.	 Each arc is labeled with a symbol 

of Σ ∪{$}. For any i, 1 ≤ i ≤ n, the con-
catenation of the labels on the path 
from the root of Tx to leaf i is precisely 
the suffix

sufi = xixi+1…xn−1$.
3.	 For any two suffixes sufi and sufj 

of x$, if wij is the longest common pre-
fix that sufi and sufj have in common, 
then the path in Tx relative to wij is 
the same for sufi and sufj .

An example of expanded suffix tree 
is given in Figure 1.

The tree can be interpreted as 
the state transition diagram of a de-
terministic finite automaton where 
all nodes and leaves are final states, 
the root is the initial state, and the 
labeled arcs, which are assumed to 
point downward, represent part of 
the state-transition function. The 
state transitions not specified in the 
diagram lead to a unique non-final 
sink state. Our automaton recognizes 
the (finite) language consisting of all 
substrings of string x. This observa-
tion also clarifies how the tree can be 
used in an online search: letting y be 
the pattern, we follow the downward 
path in the tree in response to con-
secutive symbols of y, one symbol at a 
time. Clearly, y occurs in x if and only 
if this process leads to a final state. 
In terms of Tx, we say the locus of a 
string y is the node α, if it exists, such 
that the path from the root of Tx to α 
is labeled y.

An algorithm for the direct con-
struction of the expanded Tx (often 
called suffix trie) is readily derived 
(see Figure 2). We start with an empty 
tree and add to it the suffixes of x$ one 
at a time. This procedure takes time 
Θ(n2) and O(n2) space, however, it is 
easy to reduce space to O(n) thereby 
producing a suffix tree in compact 
form (Figure 3). Once this is done, it 
becomes possible to aim for an ex-
pectedly non-trivial O(n) time con-
struction.

At the CPM Conference of 2013, 
McCreight revealed his O(n) time 
construction was not born as an al-
ternative to Weiner’s—he had de-
veloped it in an effort to understand 
Weiner’s paper, but when he showed 
it to Weiner asking him to confirm 
he had understood that paper the 
answer was “No, but you have come 

up with an entirely different and el-
egant construction!” In unpublished 
lecture notes of 1975, Vaughan Pratt 
displayed the duality of this structure 
and Weiner’s “repetition finder.”37 
McCreight’s algorithm was still in-
herently offline, and it immediately 
triggered a search for an online ver-
sion. Some partial attempts at an on-
line algorithm were made, but such 
a variant had to wait almost two de-
cades for Esko Ukkonen’s paper in 
1995.39 In all these linear-time con-
structions, linearity was based on 
the assumption of a finite alphabet 
and took Θ(n log n) time without 
that assumption. In 1997, Martin 
Farach introduced an algorithm that 
abandoned the one suffix-at-time 
approach prevalent until then; this 
algorithm gives a linear-time reduc-
tion from suffix-tree construction 
to character sorting, and thus is op-
timal for all alphabets.17 In particu-
lar, it runs in linear time for a larg-
er class of alphabets, for example, 
when the alphabet size is polynomial 
in input length.

Around 1984, Blumer et al.9 and Cro-
chemore14 exposed the surprising re-
sult that the smallest finite automaton 
recognizing all and only the suffixes of 

a string of n characters has only O(n) 
states and edges. Initially coined a 
directed acyclic word graph (DAWG), 
it can even be further reduced if all 
states are terminal states.14 It then ac-
cepts all substrings of the string and 
is called the factor—substring autom-
aton. There is a nice relation between 
the index data structures when the 
string has no end-marker and its suf-
fixes are marked with terminal states 
in the tree.

Then, the suffix tree is the edge-
compacted version of the tree and its 
number of nodes can be minimized 
like with any automaton thereby 
providing the compact DAWG of the 
string. Permuting the two operations, 
compaction and minimization, leads 
to the same structure. Apparently Ana-
toli Slissenko (see the appendix avail-

 key insights
˽˽ The suffix tree is the core data structure 

in string analysis.

˽˽ It has a rich history, with connections  
to compression, matching, automata, 
data structures and more.

˽˽ There are powerful techniques to build 
suffix trees and use them efficiently in 
many applications.

Figure 3. A suffix tree in compact form. 
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This is obtained by first collapsing every chain formed by nodes with only one child into a single arc. 
The resulting compact version of Tx has at most n internal nodes, since there are n + 1 leaves in total 
and every internal node is branching. The labels of the generic arc are now a substring, rather than a 
symbol of x$. However, arc labels can be expressed by suitable pairs of pointers to a common copy of 
x$ thus achieving O(n) space bound overall.
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Thus, by a remarkable alignment 
of stars, the compression method 
brought about by Lempel and Ziv was 
not only optimal in the information 
theoretic sense, but it found an opti-
mal, linear-time implementation by 
the suffix tree, as was detailed imme-
diately by Michael Rodeh, Vaugham 
Pratt, and Shimon Even.38

In his original paper, Weiner listed 
a few applications of his “bi-tree” in-
cluding most notably offline string 
searching: preprocessing a text file 
to support queries that return the oc-
currences of a given pattern in time 
linear in the length of the pattern. 
And of course, the “bi-tree” addressed 
Knuth’s conjecture, by showing how 
to find the longest substring com-
mon to two files in linear time for a 
finite alphabet. There followed un-
published notes by Pratt entitled “Im-
provements and Applications for the 
Weiner Repetition Finder.”37 A decade 
later, Alberto Apostolico would list 
more applications in a paper entitled 
“The Myriad Virtues of Suffix Trees,”2 

able with this article in the ACM Digital  
Library under Source Material) end-
ed up with a similar structure for his 
work on the detection of repetitions 
in strings. These automata provide 
another more efficient counterexam-
ple to Knuth’s conjecture when they 
are used, against the grain, as pattern- 
matching machines (see Figure 4).

The appearance of suffix trees 
dovetailed with some interesting and 
independent developments in in-
formation theory. In his famous ap-
proach to the notion of information, 
Kolmogorov equated the information 
or structure in a string to the length 
of the shortest program that would 
be needed to produce that string by 
a Universal Turing Machine. The un-
fortunate thing is this measure is not 
computable and even if it were, most 
long strings are incompressible (that 
is, lack a short program producing 
them), since there are increasingly 
many long strings and comparatively 
much fewer short programs (them-
selves strings).

The regularities exploited by Kol-
mogorov’s universal and omniscient 
machine could be of any conceivable 
kind, but what if one limited them to 
the syntactic redundancies affecting 
a text in the form of repeated sub-
strings? If a string is repeated many 
times one could profitably encode all 
occurrences by a pointer to a com-
mon copy. This copy could be internal 
or external to the text. In the former 
case one could have pointers going in 
both directions or only in one direc-
tion, allow or forbid nesting of point-
ers, and so on. In his doctoral thesis, 
Jim Storer showed that virtually all 
such “macro schemes” are intracta-
ble, except one. Not long before that, 
in a landmark paper entitled “On the 
Complexity of Finite Sequences,”30 
Abraham Lempel and Jacob Ziv had 
proposed a variable-to-block encod-
ing, based on a simple parsing of the 
text with the feature that the compres-
sion achieved would match, in the 
limit, that produced by a compressor 
tailored to the source probabilities. 

Figure 4. The compact suffix tree (left) and the suffix automaton (right) of the string “bananas.” 
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Failure links are represented by the dashed arrows. Despite the fact it is an index on the string, the 
same automaton can be used as a pattern-matching machine to locate substrings of “bananas” in 
another text or to compute their longest common substring. The process runs online on the second 
string. Assume for example “bana” has just been scanned from the second string and the current state 
of the automaton is state 4. If the next letter is “n,” the common substring is “banan” of length 5 and 
the new state is 5. If the next letter is “s,” the failure link is used and from state 3’ corresponding to  
a common substring “ana” of length 3 we get the common substring “ana” with the new state 7.  
If the next letter is “b,” iterating the failure link leads to state 0 and we get the common substring “b” 
with the new state 1. Finally, any other next letter will produce the empty common substring and state 0.



APRIL 2016  |   VOL.  59  |   NO.  4  |   COMMUNICATIONS OF THE ACM     71

review articles

and two decades later suffix trees and 
companion structures with their ap-
plications gave rise to several chap-
ters in reference books by Croche-
more and Rytter, Dan Gusfield, and 
Crochemore, Hancart, and Lecroq 
(see the appendix available with this 
article in the ACM Digital Library).

The space required by suffix trees 
has been a nuisance in applications 
where they were needed the most. 
With genomes on the order of giga-
bytes, for instance, the space differ-
ence between 20 times larger than 
the source versus, say, only 11 times 
larger, can be substantial. For a few 
lustra, Stefan Kurtz and his co-work-
ers devoted their effort to cleverly al-
locating the tree and some of its com-
panion structures.28 In 2001, David R. 
Clark and J. Ian Munro proposed one 
of the best space-saving methods on 
secondary storage.13 Clark and Mun-
ro’s “succinct suffix tree” sought to 
preserve as much of the structure of 
the suffix tree as possible. Udi Manber 
and Eugene W. Myers took a different 
approach, however. In 1990, they in-
troduced the “suffix array,”31 which 
eliminated most of the structure of 
the suffix tree, but was still able to 
implement many of the same opera-
tions, requiring space equal to 2 inte-
gers per text character and searching 
in time O(|P| + log n) (reducible to 1 by 
accepting search time O(|P| + log n)). 
The suffix array stores the suffixes of 
the input in lexicographic order and 
can be seen as the sequence of leaves’ 
labels as found in the suffix tree by a 
preorder traversal that would expand 
each node according to the lexico-
graphic order. 

Although the suffix array seemed 
at first to be a different data structure 
than the suffix tree, the distinction 
has receded. For example, Manber 
and Myers’s original construction of 
the suffix array took O(n log n) time 
for any alphabet, but the suffix array 
could be constructed in linear time 
from the suffix tree for any alphabet. 
In 2001, Toru Kasai et al.27 showed the 
suffix tree could be constructed in lin-
ear time from the suffix array. There-
fore, the suffix array was shown to be 
a succinct representation of the suffix 
tree. In 2003, three groups presented 
three different modifications of Far-
ach’s algorithm for suffix tree con-

struction to give the first linear-time 
algorithms for directly constructing 
the suffix array; that is, the first linear-
time algorithms for computing suffix 
arrays that did not first compute the 
full suffix tree. Since then, there have 
been many algorithms for fast con-
struction of suffix arrays, notably by 
Nong, Zhang, and Chan,35 which is 
linear time and fast in practice. With 
fast construction algorithms and 
small space required, the suffix ar-
ray is the suffix-tree variant that has 
gained the most widespread adoption 
in software systems. A more recent 
succinct suffix tree and array, which 
take O(n) bits to represent for a binary 
alphabet (O(n log σ) bits otherwise), 
was presented by Grossi and Vitter.21

Actually, the histories of suffix 
trees and compression are tightly in-
tertwined. This should not come as a 
surprise, since the redundancies that 
pattern discovery tries to unearth are 
ideal candidates to be removed for 
purposes of compression. In 1994, M. 
Burrows and D.J. Wheeler proposed a 
breakthrough compression method 
based on suffix sorting.11 Circa 1995, 
Amihood Amir, Gary Benson, and 
Martin Farach posed the problem of 
searching in compressed texts.1 In 
2000, Paolo Ferragina and Giovanni 
Manzini introduced the FM-inde x, a 
compressed suffix array based on the 
Burrows-Wheeler transform.19 This 
structure, which may be smaller than 
the source file, supports searching 
without decompression. This was ex-
tended to compressed tree indexing 
problems in Ferragina et al.18 using a 
modification of the Burrows-Wheeler 
transform.

Fallout, Extensions,  
and Challenges
As highlighted out the outset, there 
has been hardly any application of 
text processing that did not need 
these indexes at one point or another. 
A prominent case has been search-
ing with errors, a problem first ef-
ficiently tackled in 1985 by Gad Lan-
dau in his Ph.D. thesis.29 In this kind 
of search, one looks for substrings of 
the text that differ from the pattern in 
a limited number of errors such as a 
single character deletion, insertion 
or substitution. To efficiently solve 
this problem, Landau combined suf-

Although the  
suffix array  
seemed at first  
to be a different 
data structure than 
the suffix tree,  
the distinction  
has receded. 
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Among the latter, there is the prob-
lem of computing the forbidden or 
absent words of a text, which are min-
imal strings that do not appear in the 
text (while all their proper substrings 
do).8,15 Such words lead to, among 
other things, an original approach to 
text compression.16 Once regarded 
as the succinct representation of the 
“bag-of-words” of a text, suffix trees 
can be used to assess the similarity of 
two text files, thereby supporting clus-
tering, document classification, and 
even phylogeny.4,12,40 Intuitively, this is 
done by assessing how much the trees 
for the two input sequences have in 
common. Suitably enriched with the 
probability of the substring ending at 
each node, a tree can be used to detect 
surprisingly over-represented sub-
strings of any length,3 for example, in 
the quest of promoter regions in bi-
osequences.

The suffix tree of the concatena-
tion of say, k ≥ 2 text files, supports 
efficient solutions to problems aris-
ing in domains ranging from plagia-
rism detection to motif discovery in 
biosequences. The need for k distinct 
end-markers poses some subtleties 
in maintaining linear time, for which 
the reader is referred to Gusfield.22 In 
its original form, the problem of in-
dexing multiple texts was called the 
“color problem” and seeks to report, 
for any given query string and in time 
linear in the query, how many docu-
ments out of the total of k contain at 
least one occurrence of the query. A 
simple and elegant solution was given 
in 1992 by Lucas C.K. Hui.25 Recently, 
the combined suffix trees of many 
strings (also know as the generalized 
suffix tree) was used to solve a variety 
of document listing problems. Here, a 
set of text documents is preprocessed 
as a combined suffix tree. The prob-
lem is to return the list of all docu-
ments that contain a query pattern 
in time proportional to the number 
of such documents, not to the total 
number of occurrences (occ), which 
can be significantly larger. This prob-
lem was solved in Muthukrishnan33 by 
reducing it to range minimum queries. 
This basic document-listing prob-
lem has since been extended to many 
other problems including listing the 
top-k in various string and informa-
tion distances. For example, in Hon 

fix trees with a clever solution to the 
so-called lowest common ancestor 
(LCA) problem. The LCA problem as-
sumes a rooted tree is given and then 
it seeks, for any pair of nodes, the low-
est node in the tree that is an ances-
tor of both.23 It is seen that following 
a linear-time preprocessing of the 
tree any LCA query can be answered 
in constant time. Landau used LCA 
queries on suffix trees to perform 
constant-time jumps over segments 
of the text that would be guaranteed 
to match the pattern. When k errors 
are allowed, the search for an occur-
rence at any given position can be 
abandoned after k such jumps. This 
leads to an algorithm that searches 
for a pattern with k errors in a text of n 
characters in O(nk) steps.

Among the basic primitives sup-
ported by suffix trees and arrays, one 
finds, of course, the already men-
tioned search for a pattern in a text in 
time proportional to the length of the 
pattern rather than the text. In fact, it 
is even possible to enumerate occur-
rences in time proportional to their 
number and, with trivial preprocess-
ing of the tree, tell the total number of 
occurrences for any query pattern in 
time proportional to the pattern size. 
The problem of finding the longest 
substring appearing twice in a text 
or shared between two files has been 
noted previously: this is probably 
where it all started. A germane prob-
lem is that of detecting squares, rep-
etitions, and maximal periodicities 
in a text, a problem rooted in work by 
Axel Thue dated more than a century 
ago with multiple contemporary ap-
plications in compression and DNA 
analysis. A square is a pattern consist-
ing of two consecutive occurrences 
of the same string. Suffix trees have 
been used to detect in optimal O(n log 
n) time all squares (or repetitions) in a 
text, each with its set of starting posi-
tions,5 and later to find and store all 
distinct square substrings in a text in 
linear time. Squares play a role in an 
augmentation of the suffix tree suit-
able to report, for any query pattern, 
the number of its non-overlapping oc-
currences.6,10

There are multiple uses of suf-
fix trees in setting up some kind of 
signature for text strings, as well as 
measures of similarity or difference. 

There are multiple 
uses of suffix trees 
in setting up some 
kind of signature 
for text strings, as 
well as measures 
of similarity or 
difference. 
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et al.,24 the structure of generalized 
suffix tree is crucially used to design 
a linear machine-word data structure 
to return the top-k most frequent doc-
uments containing a pattern p in time 
nearly linear in pattern size.

One surprising variant of the suffix 
tree was introduced by Brenda Baker 
for purposes of detection of plagia-
rism in student reports as well as op-
timization in software development.7 
This variant of pattern matching, 
called “parameterized matching,” en-
ables one to find program segments 
that are identical up to a systematic 
change of parameters, or substrings 
that are identical up to a systematic 
relabeling or permutation of the char-
acters in the alphabet. One obvious 
extension of the notion of a suffix 
tree is to more than one dimension, 
albeit the mechanics of the extension 
itself are far from obvious.34 Among 
more distant relatives, one finds 
“wavelet trees.” Originally proposed 
as a representation of compressed 
suffix arrays,20 wavelet trees enable 
one to perform on general alphabets 
the ranking and selection primitives 
previously limited to bit vectors, and 
more.

The list could go on and on, but the 
scope of this article was not meant 
to be exhaustive. Actually, after 40 
years of unrelenting developments, 
it is fair to assume the list will con-
tinue to grow. Open problems also 
abound. For instance, many of the 
observed sequences are expressed in 
numbers rather than characters, and 
in both cases are affected by various 
types of errors. While the outcome of 
a two-character comparison is just 
one bit, two numbers can be more or 
less close, depending on their differ-
ence or some other metric. Likewise, 
two text strings can be more or less 
similar, depending on the number of 
elementary steps necessary to change 
one in the other. The most disruptive 
aspect of this framework is the loss of 
the transitivity property that leads to 
the most efficient exact string match-
ing solutions. And yet indexes capa-
ble of supporting fast and elegant ap-
proximate pattern queries of the kind 
just highlighted would be immensely 
useful. Hopefully, they will come up 
soon and, in time, have their own 40th 

-anniversary celebration.
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