
66 COMMUNICATIONS OF THE ACM | APRIL 2016 | VOL. 59 | NO. 4

review articles

I
M

A
G

E
 B

Y
 P

A
P

U
C

H
A

L
K

A

DOI:10.1145/2810036

Tracing the first four decades in the life
of suffix trees, their many incarnations,
and their applications.

BY ALBERTO APOSTOLICO, MAXIME CROCHEMORE,
MARTIN FARACH-COLTON, ZVI GALIL, AND S. MUTHUKRISHNAN

W H E N W I L L I A M L E G R A N D finally decrypted the string,
it did not seem to make much more sense than it
did before.

53‡‡‡305))6*,48264‡.)4z);806”,48†8P60))85;1‡
(;:‡*8†83(88)5*†,46(;88*96*?;8)* ‡ (;485);5*†2:* ‡
(;4956*2(5*Ñ4)8P8*;4069285);)6‡8)4‡‡;1(‡9;48081;8:
8‡1;4885;4)485†528806*81(ddag9;48;(88;4(‡?34;
48)4‡;161;:188; ‡?;

The decoded message read: “A good glass in the
bishop’s hostel in the devil’s seat forty-one degrees
and thirteen minutes northeast and by north main
branch seventh limb east side shoot from the left eye
of the death’s-head a bee line from the tree through
the shot fifty feet out.” But at least it did sound more
like natural language, and eventually guided the
main character of Edgar Allan Poe’s “The Gold-Bug”36
to discover the treasure he had been after. Legrand
solved a substitution cipher using symbol frequencies.

He first looked for the most frequent
symbol and changed it into the most
frequent letter of English, then simi-
larly inferred the most frequent word,
then punctuation marks, and so on.

Both before and after 1843, the
natural impulse when faced with
some mysterious message has been
to count frequencies of individual to-
kens or subassemblies in search of a
clue. Perhaps one of the most intense
and fascinating subjects for this kind
of scrutiny have been biosequences.
As soon as some such sequences be-
came available, statistical analysts
tried to link characters or blocks of
characters to relevant biological func-
tions. With the early examples of
whole genomes emerging in the mid-
1990s, it seemed natural to count the
occurrences of all blocks of size 1, 2,
and so on, up to any desired length,
looking for statistical characteriza-
tions of coding regions, promoter re-
gions, among others.

This article is not about cryptogra-
phy. It is about a data structure and
its variants, and the many surprising
and useful features it carries. Among
these is the fact that, to set up a sta-
tistical table of occurrences for all
substrings (also called factors), of any
length, of a text string of n characters,
it only takes time and space linear in
the length of the text string. While no-
body would be so foolish as to solve
the problem by first generating all
exponentially many possible strings
and then counting their occurrences
one by one, a text string may still con-
tain Θ(n2) distinct substrings, so that
tabulating all of them in linear space,
never mind linear time, already seems
puzzling.

40 Years
of Suffix Trees

We dedicate this article to
our friend and colleague,
Alberto Apostolico (1948–2015),
who passed away on July 20.
He was a major figure in
the development of
algorithms on strings.

http://dx.doi.org/10.1145/2810036

APRIL 2016 | VOL. 59 | NO. 4 | COMMUNICATIONS OF THE ACM 67

68 COMMUNICATIONS OF THE ACM | APRIL 2016 | VOL. 59 | NO. 4

review articles

Their impact on computer science
and IT at large cannot be overstated.
Text searching and bioinformatics
would not be the same without them.
In 2013, the Combinatorial Pattern
Matching symposium celebrated the
40th anniversary of the appearance of
Weiner’s invention of the suffix tree41
with a special session entirely dedi-
cated to that event.

History Bits and Pieces
At the dawn of “stringology,” Donald
Knuth conjectured the problem of
finding the longest substring com-
mon to two long text sequences of to-
tal length n required (n log n) time. An
O(n log n)-time had been provided by
Karp, Miller, and Rosenberg.26 That
construction was destined to play a
role in parallel pattern matching, but
Knuth’s conjecture was short lived: in
1973, Peter Weiner showed the prob-
lem admitted an elegant linear-time
solution,41 as long as the alphabet of
the string was fixed. Such a solution
was actually a byproduct of a con-
struction he had originally set up for
a different purpose, that is, identify-
ing any substring of a text file with-
out specifying all of them. In doing
so, Weiner introduced the notion of
a textual inverted index that would
elicit refinements, analyses, and ap-
plications for 40 years and counting,
a feature hardly shared by any other
data structure.

Weiner’s original construction pro-
cessed the text file from right to left.
As each new character was read in, the
structure, which he called a “bi-tree,”
would be updated to accommodate
longer and longer suffixes of the text
file. Thus, this was an inherently off-
line construction, since the text had
to be known in its entirety before the
construction could begin. Alterna-
tively, one could say the algorithm
would build the structure for the re-
verse of the text online. About three
years later, Ed McCreight provided a
left-to-right algorithm and changed
the name of the structure to “suffix
tree,” a name that would stick.32

Let x be a string of n − 1 symbols
over some alphabet Σ and $ an extra
character not in Σ. The expanded suf-
fix tree Tx associated with x is a digital
search tree collecting all suffixes of x$.
Specifically, Tx is defined as follows.

Over the years, such structures
have held center stage in text search-
ing, indexing, statistics, and com-
pression as well as in the assembly,
alignment, and comparison of bi-

osequences. Their range of scope ex-
tends to areas as diverse as detecting
plagiarism, finding surprising sub-
strings in a text, testing the unique
decipherability of a code, and more.

Figure 1. The expanded suffix tree of the string x = abcabcaba.

c
a

b

c

a

a

a

$

$

a

$

$

3

6

10

8

9

7

4

1

a

a

a

a

c

c

b

b

b
b

$

$

5

2

b

a

a

a

$

$

$

$

c

b

b

c a

a

a

Figure 2. Building an expanded suffix tree by insertion of consecutive suffixes (showing
here the insertion of abcaba$).

1

$

b

c

a

b

$

$

2

4

c

a

c

a

b

b

a c

c

a

a

a

$

3

b

b

b

c

c

a

b

a

a

b

The insertion of suffix sufi (i = 1, 2, …, n) consists of two phases. In the first phase, we search for sufi
in Ti – 1. Note the presence of $ guarantees that every suffix will end in a distinct leaf. Therefore, this
search will end with failure sooner or later. At that point, we will have identified the longest prefix of
sufi that has a locus (that is, a terminal node) in Ti – 1. Let headi abcab in the example be this prefix
and α the locus of headi. We can write sufi = headi ∙ taili with taili (a$ in the example) nonempty. In
the second phase, we need to add to Ti – 1 a path leaving node α and labeled taili. This achieves the
transformation of Ti – 1 into Ti .

APRIL 2016 | VOL. 59 | NO. 4 | COMMUNICATIONS OF THE ACM 69

review articles

1.	 Tx has n leaves, labeled from 1 to n.
2.	 Each arc is labeled with a symbol

of Σ ∪{$}. For any i, 1 ≤ i ≤ n, the con-
catenation of the labels on the path
from the root of Tx to leaf i is precisely
the suffix

sufi = xixi+1…xn−1$.
3.	 For any two suffixes sufi and sufj

of x$, if wij is the longest common pre-
fix that sufi and sufj have in common,
then the path in Tx relative to wij is
the same for sufi and sufj .

An example of expanded suffix tree
is given in Figure 1.

The tree can be interpreted as
the state transition diagram of a de-
terministic finite automaton where
all nodes and leaves are final states,
the root is the initial state, and the
labeled arcs, which are assumed to
point downward, represent part of
the state-transition function. The
state transitions not specified in the
diagram lead to a unique non-final
sink state. Our automaton recognizes
the (finite) language consisting of all
substrings of string x. This observa-
tion also clarifies how the tree can be
used in an online search: letting y be
the pattern, we follow the downward
path in the tree in response to con-
secutive symbols of y, one symbol at a
time. Clearly, y occurs in x if and only
if this process leads to a final state.
In terms of Tx, we say the locus of a
string y is the node α, if it exists, such
that the path from the root of Tx to α
is labeled y.

An algorithm for the direct con-
struction of the expanded Tx (often
called suffix trie) is readily derived
(see Figure 2). We start with an empty
tree and add to it the suffixes of x$ one
at a time. This procedure takes time
Θ(n2) and O(n2) space, however, it is
easy to reduce space to O(n) thereby
producing a suffix tree in compact
form (Figure 3). Once this is done, it
becomes possible to aim for an ex-
pectedly non-trivial O(n) time con-
struction.

At the CPM Conference of 2013,
McCreight revealed his O(n) time
construction was not born as an al-
ternative to Weiner’s—he had de-
veloped it in an effort to understand
Weiner’s paper, but when he showed
it to Weiner asking him to confirm
he had understood that paper the
answer was “No, but you have come

up with an entirely different and el-
egant construction!” In unpublished
lecture notes of 1975, Vaughan Pratt
displayed the duality of this structure
and Weiner’s “repetition finder.”37
McCreight’s algorithm was still in-
herently offline, and it immediately
triggered a search for an online ver-
sion. Some partial attempts at an on-
line algorithm were made, but such
a variant had to wait almost two de-
cades for Esko Ukkonen’s paper in
1995.39 In all these linear-time con-
structions, linearity was based on
the assumption of a finite alphabet
and took Θ(n log n) time without
that assumption. In 1997, Martin
Farach introduced an algorithm that
abandoned the one suffix-at-time
approach prevalent until then; this
algorithm gives a linear-time reduc-
tion from suffix-tree construction
to character sorting, and thus is op-
timal for all alphabets.17 In particu-
lar, it runs in linear time for a larg-
er class of alphabets, for example,
when the alphabet size is polynomial
in input length.

Around 1984, Blumer et al.9 and Cro-
chemore14 exposed the surprising re-
sult that the smallest finite automaton
recognizing all and only the suffixes of

a string of n characters has only O(n)
states and edges. Initially coined a
directed acyclic word graph (DAWG),
it can even be further reduced if all
states are terminal states.14 It then ac-
cepts all substrings of the string and
is called the factor—substring autom-
aton. There is a nice relation between
the index data structures when the
string has no end-marker and its suf-
fixes are marked with terminal states
in the tree.

Then, the suffix tree is the edge-
compacted version of the tree and its
number of nodes can be minimized
like with any automaton thereby
providing the compact DAWG of the
string. Permuting the two operations,
compaction and minimization, leads
to the same structure. Apparently Ana-
toli Slissenko (see the appendix avail-

 key insights
˽˽ The suffix tree is the core data structure

in string analysis.

˽˽ It has a rich history, with connections
to compression, matching, automata,
data structures and more.

˽˽ There are powerful techniques to build
suffix trees and use them efficiently in
many applications.

Figure 3. A suffix tree in compact form.

1

4

7

9

10

8
6

3

$

a

a

b

c

a

b

a

a
$

$

a
$

b

c

c
a

b$
b

c

a

b

$ $

a a

$

5

2

ac

a

b

a

$

a

$

b

a

c

This is obtained by first collapsing every chain formed by nodes with only one child into a single arc.
The resulting compact version of Tx has at most n internal nodes, since there are n + 1 leaves in total
and every internal node is branching. The labels of the generic arc are now a substring, rather than a
symbol of x$. However, arc labels can be expressed by suitable pairs of pointers to a common copy of
x$ thus achieving O(n) space bound overall.

70 COMMUNICATIONS OF THE ACM | APRIL 2016 | VOL. 59 | NO. 4

review articles

Thus, by a remarkable alignment
of stars, the compression method
brought about by Lempel and Ziv was
not only optimal in the information
theoretic sense, but it found an opti-
mal, linear-time implementation by
the suffix tree, as was detailed imme-
diately by Michael Rodeh, Vaugham
Pratt, and Shimon Even.38

In his original paper, Weiner listed
a few applications of his “bi-tree” in-
cluding most notably offline string
searching: preprocessing a text file
to support queries that return the oc-
currences of a given pattern in time
linear in the length of the pattern.
And of course, the “bi-tree” addressed
Knuth’s conjecture, by showing how
to find the longest substring com-
mon to two files in linear time for a
finite alphabet. There followed un-
published notes by Pratt entitled “Im-
provements and Applications for the
Weiner Repetition Finder.”37 A decade
later, Alberto Apostolico would list
more applications in a paper entitled
“The Myriad Virtues of Suffix Trees,”2

able with this article in the ACM Digital
Library under Source Material) end-
ed up with a similar structure for his
work on the detection of repetitions
in strings. These automata provide
another more efficient counterexam-
ple to Knuth’s conjecture when they
are used, against the grain, as pattern-
matching machines (see Figure 4).

The appearance of suffix trees
dovetailed with some interesting and
independent developments in in-
formation theory. In his famous ap-
proach to the notion of information,
Kolmogorov equated the information
or structure in a string to the length
of the shortest program that would
be needed to produce that string by
a Universal Turing Machine. The un-
fortunate thing is this measure is not
computable and even if it were, most
long strings are incompressible (that
is, lack a short program producing
them), since there are increasingly
many long strings and comparatively
much fewer short programs (them-
selves strings).

The regularities exploited by Kol-
mogorov’s universal and omniscient
machine could be of any conceivable
kind, but what if one limited them to
the syntactic redundancies affecting
a text in the form of repeated sub-
strings? If a string is repeated many
times one could profitably encode all
occurrences by a pointer to a com-
mon copy. This copy could be internal
or external to the text. In the former
case one could have pointers going in
both directions or only in one direc-
tion, allow or forbid nesting of point-
ers, and so on. In his doctoral thesis,
Jim Storer showed that virtually all
such “macro schemes” are intracta-
ble, except one. Not long before that,
in a landmark paper entitled “On the
Complexity of Finite Sequences,”30
Abraham Lempel and Jacob Ziv had
proposed a variable-to-block encod-
ing, based on a simple parsing of the
text with the feature that the compres-
sion achieved would match, in the
limit, that produced by a compressor
tailored to the source probabilities.

Figure 4. The compact suffix tree (left) and the suffix automaton (right) of the string “bananas.”

$

a

n

a

a a

a

a

$

2

1

4

6

5

37

n

n

b

n

$

$

$

$
$

n
a

n
a

0
b a

a
a

n

n

n

n

na a s

s

s

s

71 2 3 4 5 6

2′

1′

3′

Failure links are represented by the dashed arrows. Despite the fact it is an index on the string, the
same automaton can be used as a pattern-matching machine to locate substrings of “bananas” in
another text or to compute their longest common substring. The process runs online on the second
string. Assume for example “bana” has just been scanned from the second string and the current state
of the automaton is state 4. If the next letter is “n,” the common substring is “banan” of length 5 and
the new state is 5. If the next letter is “s,” the failure link is used and from state 3’ corresponding to
a common substring “ana” of length 3 we get the common substring “ana” with the new state 7.
If the next letter is “b,” iterating the failure link leads to state 0 and we get the common substring “b”
with the new state 1. Finally, any other next letter will produce the empty common substring and state 0.

APRIL 2016 | VOL. 59 | NO. 4 | COMMUNICATIONS OF THE ACM 71

review articles

and two decades later suffix trees and
companion structures with their ap-
plications gave rise to several chap-
ters in reference books by Croche-
more and Rytter, Dan Gusfield, and
Crochemore, Hancart, and Lecroq
(see the appendix available with this
article in the ACM Digital Library).

The space required by suffix trees
has been a nuisance in applications
where they were needed the most.
With genomes on the order of giga-
bytes, for instance, the space differ-
ence between 20 times larger than
the source versus, say, only 11 times
larger, can be substantial. For a few
lustra, Stefan Kurtz and his co-work-
ers devoted their effort to cleverly al-
locating the tree and some of its com-
panion structures.28 In 2001, David R.
Clark and J. Ian Munro proposed one
of the best space-saving methods on
secondary storage.13 Clark and Mun-
ro’s “succinct suffix tree” sought to
preserve as much of the structure of
the suffix tree as possible. Udi Manber
and Eugene W. Myers took a different
approach, however. In 1990, they in-
troduced the “suffix array,”31 which
eliminated most of the structure of
the suffix tree, but was still able to
implement many of the same opera-
tions, requiring space equal to 2 inte-
gers per text character and searching
in time O(|P| + log n) (reducible to 1 by
accepting search time O(|P| + log n)).
The suffix array stores the suffixes of
the input in lexicographic order and
can be seen as the sequence of leaves’
labels as found in the suffix tree by a
preorder traversal that would expand
each node according to the lexico-
graphic order.

Although the suffix array seemed
at first to be a different data structure
than the suffix tree, the distinction
has receded. For example, Manber
and Myers’s original construction of
the suffix array took O(n log n) time
for any alphabet, but the suffix array
could be constructed in linear time
from the suffix tree for any alphabet.
In 2001, Toru Kasai et al.27 showed the
suffix tree could be constructed in lin-
ear time from the suffix array. There-
fore, the suffix array was shown to be
a succinct representation of the suffix
tree. In 2003, three groups presented
three different modifications of Far-
ach’s algorithm for suffix tree con-

struction to give the first linear-time
algorithms for directly constructing
the suffix array; that is, the first linear-
time algorithms for computing suffix
arrays that did not first compute the
full suffix tree. Since then, there have
been many algorithms for fast con-
struction of suffix arrays, notably by
Nong, Zhang, and Chan,35 which is
linear time and fast in practice. With
fast construction algorithms and
small space required, the suffix ar-
ray is the suffix-tree variant that has
gained the most widespread adoption
in software systems. A more recent
succinct suffix tree and array, which
take O(n) bits to represent for a binary
alphabet (O(n log σ) bits otherwise),
was presented by Grossi and Vitter.21

Actually, the histories of suffix
trees and compression are tightly in-
tertwined. This should not come as a
surprise, since the redundancies that
pattern discovery tries to unearth are
ideal candidates to be removed for
purposes of compression. In 1994, M.
Burrows and D.J. Wheeler proposed a
breakthrough compression method
based on suffix sorting.11 Circa 1995,
Amihood Amir, Gary Benson, and
Martin Farach posed the problem of
searching in compressed texts.1 In
2000, Paolo Ferragina and Giovanni
Manzini introduced the FM-inde x, a
compressed suffix array based on the
Burrows-Wheeler transform.19 This
structure, which may be smaller than
the source file, supports searching
without decompression. This was ex-
tended to compressed tree indexing
problems in Ferragina et al.18 using a
modification of the Burrows-Wheeler
transform.

Fallout, Extensions,
and Challenges
As highlighted out the outset, there
has been hardly any application of
text processing that did not need
these indexes at one point or another.
A prominent case has been search-
ing with errors, a problem first ef-
ficiently tackled in 1985 by Gad Lan-
dau in his Ph.D. thesis.29 In this kind
of search, one looks for substrings of
the text that differ from the pattern in
a limited number of errors such as a
single character deletion, insertion
or substitution. To efficiently solve
this problem, Landau combined suf-

Although the
suffix array
seemed at first
to be a different
data structure than
the suffix tree,
the distinction
has receded.

72 COMMUNICATIONS OF THE ACM | APRIL 2016 | VOL. 59 | NO. 4

review articles

Among the latter, there is the prob-
lem of computing the forbidden or
absent words of a text, which are min-
imal strings that do not appear in the
text (while all their proper substrings
do).8,15 Such words lead to, among
other things, an original approach to
text compression.16 Once regarded
as the succinct representation of the
“bag-of-words” of a text, suffix trees
can be used to assess the similarity of
two text files, thereby supporting clus-
tering, document classification, and
even phylogeny.4,12,40 Intuitively, this is
done by assessing how much the trees
for the two input sequences have in
common. Suitably enriched with the
probability of the substring ending at
each node, a tree can be used to detect
surprisingly over-represented sub-
strings of any length,3 for example, in
the quest of promoter regions in bi-
osequences.

The suffix tree of the concatena-
tion of say, k ≥ 2 text files, supports
efficient solutions to problems aris-
ing in domains ranging from plagia-
rism detection to motif discovery in
biosequences. The need for k distinct
end-markers poses some subtleties
in maintaining linear time, for which
the reader is referred to Gusfield.22 In
its original form, the problem of in-
dexing multiple texts was called the
“color problem” and seeks to report,
for any given query string and in time
linear in the query, how many docu-
ments out of the total of k contain at
least one occurrence of the query. A
simple and elegant solution was given
in 1992 by Lucas C.K. Hui.25 Recently,
the combined suffix trees of many
strings (also know as the generalized
suffix tree) was used to solve a variety
of document listing problems. Here, a
set of text documents is preprocessed
as a combined suffix tree. The prob-
lem is to return the list of all docu-
ments that contain a query pattern
in time proportional to the number
of such documents, not to the total
number of occurrences (occ), which
can be significantly larger. This prob-
lem was solved in Muthukrishnan33 by
reducing it to range minimum queries.
This basic document-listing prob-
lem has since been extended to many
other problems including listing the
top-k in various string and informa-
tion distances. For example, in Hon

fix trees with a clever solution to the
so-called lowest common ancestor
(LCA) problem. The LCA problem as-
sumes a rooted tree is given and then
it seeks, for any pair of nodes, the low-
est node in the tree that is an ances-
tor of both.23 It is seen that following
a linear-time preprocessing of the
tree any LCA query can be answered
in constant time. Landau used LCA
queries on suffix trees to perform
constant-time jumps over segments
of the text that would be guaranteed
to match the pattern. When k errors
are allowed, the search for an occur-
rence at any given position can be
abandoned after k such jumps. This
leads to an algorithm that searches
for a pattern with k errors in a text of n
characters in O(nk) steps.

Among the basic primitives sup-
ported by suffix trees and arrays, one
finds, of course, the already men-
tioned search for a pattern in a text in
time proportional to the length of the
pattern rather than the text. In fact, it
is even possible to enumerate occur-
rences in time proportional to their
number and, with trivial preprocess-
ing of the tree, tell the total number of
occurrences for any query pattern in
time proportional to the pattern size.
The problem of finding the longest
substring appearing twice in a text
or shared between two files has been
noted previously: this is probably
where it all started. A germane prob-
lem is that of detecting squares, rep-
etitions, and maximal periodicities
in a text, a problem rooted in work by
Axel Thue dated more than a century
ago with multiple contemporary ap-
plications in compression and DNA
analysis. A square is a pattern consist-
ing of two consecutive occurrences
of the same string. Suffix trees have
been used to detect in optimal O(n log
n) time all squares (or repetitions) in a
text, each with its set of starting posi-
tions,5 and later to find and store all
distinct square substrings in a text in
linear time. Squares play a role in an
augmentation of the suffix tree suit-
able to report, for any query pattern,
the number of its non-overlapping oc-
currences.6,10

There are multiple uses of suf-
fix trees in setting up some kind of
signature for text strings, as well as
measures of similarity or difference.

There are multiple
uses of suffix trees
in setting up some
kind of signature
for text strings, as
well as measures
of similarity or
difference.

APRIL 2016 | VOL. 59 | NO. 4 | COMMUNICATIONS OF THE ACM 73

review articles

et al.,24 the structure of generalized
suffix tree is crucially used to design
a linear machine-word data structure
to return the top-k most frequent doc-
uments containing a pattern p in time
nearly linear in pattern size.

One surprising variant of the suffix
tree was introduced by Brenda Baker
for purposes of detection of plagia-
rism in student reports as well as op-
timization in software development.7
This variant of pattern matching,
called “parameterized matching,” en-
ables one to find program segments
that are identical up to a systematic
change of parameters, or substrings
that are identical up to a systematic
relabeling or permutation of the char-
acters in the alphabet. One obvious
extension of the notion of a suffix
tree is to more than one dimension,
albeit the mechanics of the extension
itself are far from obvious.34 Among
more distant relatives, one finds
“wavelet trees.” Originally proposed
as a representation of compressed
suffix arrays,20 wavelet trees enable
one to perform on general alphabets
the ranking and selection primitives
previously limited to bit vectors, and
more.

The list could go on and on, but the
scope of this article was not meant
to be exhaustive. Actually, after 40
years of unrelenting developments,
it is fair to assume the list will con-
tinue to grow. Open problems also
abound. For instance, many of the
observed sequences are expressed in
numbers rather than characters, and
in both cases are affected by various
types of errors. While the outcome of
a two-character comparison is just
one bit, two numbers can be more or
less close, depending on their differ-
ence or some other metric. Likewise,
two text strings can be more or less
similar, depending on the number of
elementary steps necessary to change
one in the other. The most disruptive
aspect of this framework is the loss of
the transitivity property that leads to
the most efficient exact string match-
ing solutions. And yet indexes capa-
ble of supporting fast and elegant ap-
proximate pattern queries of the kind
just highlighted would be immensely
useful. Hopefully, they will come up
soon and, in time, have their own 40th

-anniversary celebration.

Acknowledgments. We are grate-
ful to Ed McCreight, Ronnie Martin,
Vaughan Pratt, Peter Weiner, and Ja-
cob Ziv for discussions and help. We
are indebted to the referees for their
careful scrutiny of an earlier version
of this article, which led to many im-
provements.	

References
1.	 Amir, A., Benson, G. and Farach, M. Let sleeping

files lie: Pattern matching in Z-compressed files. In
Proceedings of the 5th ACM-SIAM Annual Symposium
on Discrete Algorithms (Arlington, VA, 1994), 705–714.

2.	 Apostolico, A. The myriad virtues of suffix trees.
Combinatorial Algorithms on Words, vol. 12 of NATO
Advanced Science Institutes, Series F. A. Apostolico
and Z. Galil, Eds. Springer-Verlag, Berlin, 1985, 85–96.

3.	 Apostolico, A., Bock, M.E. and Lonardi, S. Monotony of
surprise and large-scale quest for unusual words.
J. Computational Biology 10, 3 / 4 (2003), 283–311.

4.	 Apostolico, A., Denas, O. and Dress, A. Efficient tools
for comparative substring analysis. J. Biotechnology
149, 3 (2010), 120–126.

5.	 Apostolico, A. and Preparata, F.P. Optimal off-line
detection of repetitions in a string. Theor. Comput. Sci.
22, 3 (1983), 297–315.

6.	 Apostolico, A. and Preparata, F.P. Data structures
and algorithms for the strings statistics problem.
Algorithmica 15, 5 (May 1996), 481–494.

7.	 Baker, B.S. Parameterized duplication in strings:
Algorithms and an application to software maintenance.
SIAM J. Comput. 26, 5 (1997), 1343–1362.

8.	 Béal, M.-P., Mignosi, F. and Restivo, A. Minimal
forbidden words and symbolic dynamics. In
Proceedings of the 13th Annual Symposium on
Theoretical Aspects of Computer Science, vol. 1046 of
Lecture Notes in Computer Science (Grenoble, France,
Feb. 22–24, 1996). Springer, 555–566.

9.	 Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D.,
Chen, M.T. and Seiferas, J. The smallest automaton
recognizing the subwords of a text. Theor. Comput. Sci.
40, 1 (1985), 31–55.

10.	 Brodal, G.S., Lyngsø, R.B., Östlin, A. and Pedersen, C.N.S.
Solving the string statistics problem in time O(n log n).
In Proceedings of the 29th International Colloquium on
Automata, Languages and Programming, vol. 2380 of
Lecture Notes in Computer Science (Malaga, Spain,
July 8–13, 2002). Springer, 728–739.

11.	 Burrows, M. and Wheeler, D.J. A block-sorting lossless
data compression algorithm. Technical Report 124,
Digital Equipment Corp., May 1994.

12.	 Chairungsee, S. and Crochemore, M. Using minimal
absent words to build phylogeny. Theoretical
Computer Science 450, 1 (2012), 109–116.

13.	 Clark, D.R. and Munro, J.I. Efficient suffix trees on
secondary storage. In Proceedings of the 7th ACM-
SIAM Annual Symposium on Discrete Algorithms,
(Atlanta, GA, 1996), 383–391.

14.	 Crochemore, M. Transducers and repetitions.
Theor. Comput. Sci., 45, 1 (1986), 63–86.

15.	 Crochemore, M., Mignosi, F. and Restivo, A. Automata
and forbidden words. Information Processing Letters
67, 3 (1998), 111–117.

16.	 Crochemore, M., Mignosi, F., Restivo, A and Salemi,
S. Data compression using antidictonaries. In
Proceedings of the IEEE: Special Issue Lossless Data
Compression 88, 11 (2000). J. Storer, Ed., 1756–1768.

17.	 Farach, M. Optimal suffix tree construction with large
alphabets. In Proceedings of the 38th IEEE Annual
Symposium on Foundations of Computer Science
(Miami Beach, FL, 1997), 137–143.

18.	 Ferragina, P., Luccio, F., Manzini, G. and Muthukrishnan,
S. Compressing and indexing labeled trees with
applications. JACM 57, 1 (2009).

19.	 Ferragina, P. and Manzini, G. Opportunistic data
structures with applications. In FOCS (2000), 390–398.

20.	 Grossi, R., Gupta, A. and Vitter, J.S. High-order entropy-
compressed text indexes. In SODA (2003), 841–850.

21.	 Grossi, R. and Vitter, J.S. Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching. In Proceedings ACM Symposium on
the Theory of Computing (Portland, OR, 2000). ACM
Press, 397–406).

22.	 Gusfield, D. Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology.
Cambridge University Press, Cambridge, U.K., 1997.

23.	 Harel, D. and Tarjan, R.E. Fast algorithms for finding
nearest common ancestors. SIAM J. Comput. 13, 2
(1984), 338–355.

24.	 Hon, W.-K., Shah, R. and Vitter, J.S. Space-efficient
framework for top-k string retrieval problems. In
FOCS. IEEE Computer Society, 2009, 713–722.

25.	Hui, L.C.K. Color set size problem with applications
to string matching. In Proceedings of the 3rd
Annual Symposium on Combinatorial Pattern
Matching, no. 644 in Lecture Notes in Computer
Science, (Tucson, AZ, 1992). A. Apostolico, M.
Crochemore, Z. Galil, and U. Manber, Eds. Springer-
Verlag, Berlin, 230–243.

26.	 Karp, R.M., Miller, R.E., and Rosenberg, A.L. Rapid
identification of repeated patterns in strings, trees
and arrays. In Proceedings of the 4th ACM Symposium
on the Theory of Computing (Denver, CO, 1972). ACM
Press, 125–13.

27.	 Kasai, T., Lee, G., Arimura, H., Arikawa, S. and Park,
K. Linear-time longest-common-prefix computation
in suffix arrays and its applications. CPM. Springer-
Verlag, 2001, 181–192.

28.	 Kurtz, S. Reducing the space requirements of suffix
trees. Softw. Pract. Exp. 29, 13 (1999), 1149–1171.

29.	 Landau, G.M. String matching in erroneus input.
Ph.D. Thesis, Department of Computer Science, Tel-
Aviv University, 1986.

30.	 Lempel, A. and Ziv, J. On the complexity of finite
sequences. IEEE Trans. Inf. Theory 22 (1976), 75–81.

31.	 Manber, U. and Myers, G. Suffix arrays: A new method
for on-line string searches. In Proceedings of the 1st
ACM-SIAM Annual Symposium on Discrete
Algorithms (San Francisco, CA, 1990), 319–327.

32.	 McCreight, E.M. A space-economical suffix tree
construction algorithm. J. Algorithms 23, 2 (1976),
262–272.

33.	 Muthukrishnan, S. Efficient algorithms for document
listing problems. In Proceedings of the 13th ACM-
SIAM Annual Symposium on Discrete Algorithms
(2002), 657–666.

34.	 J. C. Na, P. Ferragina, R. Giancarlo, and K. Park. Two-
dimensional pattern indexing. In Encyclopedia of
Algorithms. 2008.

35.	 Nong, G., Zhang, S. and Chan, W.H. Two efficient
algorithms for linear time suffix array construction.
IEEE Trans. Comput. 60, 10 (2011), 1471–1484.

36.	 Poe, E.A. The Gold-Bug and Other Tales. Dover Thrift
Editions Series. Dover, 1991.

37.	 Pratt, V. Improvements and applications for the
Weiner repetition finder. Manuscript, 1975.

38.	 Rodeh, M., Pratt, V. and Even, S. Linear algorithm
for data compression via string matching. J. Assoc.
Comput. Mach. 28, 1 (1981), 16–24.

39.	 Ukkonen, E. On-line construction of suffix trees.
Algorithmica 14, 3 (1995), 249–260.

40.	Ulitsky, I., Burstein, D., Tuller, T. and Chor, B. The
average common substring approach to phylogenomic
reconstruction. J. Computational Biology 13, 2 (2006),
336–350.

41.	 Weiner, P. Linear pattern matching algorithms. In
Proceedings of the 14th Annual IEEE Symposium on
Switching and Automata Theory, (Washington, D.C.,
1973), 1–11.

Alberto Apostolico held joint appointments with Georgia
Tech’s School of Computational Science and Engineering
School of Interactive computing as a professor and a
researcher. He passed away on July 20, 2015.

Maxime Crochemore (maxime.crochemore@kcl.ac.uk)
is a professor at King’s College London and Université
Paris-Est, France.

Martin Farach-Colton (farach@cs.rutgers.edu) is a
professor in the Department of Computer Science at
Rutgers University, Piscataway, NJ.

Zvi Galil (galil@cc.gatech.edu) is Dean of the College of
Computing at Georgia Institute of Technology, Atlanta, GA.

S. Muthukrishnan (muthu@cs.rutgers.edu) is a professor
in the Department of Computer Science at Rutgers
University, Piscataway, NJ.

Copyright held by authors.
Publication rights licensed to ACM. $15.00.

