Knuth-Morris-Pratt Algorithm

CS181 Fall 2020

Overview of Knuth-Morris-Pratt (KMP)

The Knuth-Morris-Pratt (KMP) algorithm is a pattern-matching algorithm; it finds
all occurrences of a pattern P of length p in a text T of length t
It takes advantage of the failure function f on the pattern P to search in linear
time O(p + 1)!

o The general idea is that after we’ve seen a character in T once, we should already be able to

tell whether the pattern could start there, even if we never explicitly attempted to match P,
directly to T,

We’ve already seen the algorithm and pseudocode for constructing the failure
function, so we’ll focus on KMP here using a similar example

Definitions

® Inputs:
o TextT,indexed by, from1tot
o Pattern P, indexed by i from 1to p

® Output:
o Alist of positions k, where T, .., =P
® Failure function, f

o Atable of p entries, where each entry f{i) is the length of the longest proper suffix of P,.; which
is also a proper prefix of P
o See previous slide deck for a more detailed explanation

The Algorithm

1. Calculate the failure function f for the
pattern P

2. Construct a skeleton DFA which accepts P
and includes transitions based on f

3. Initialize the skeleton DFA to state O and
the T pointer to 1

4. Iterate through the text T

**Here we show a version of the pseudocode which conceptualizes
KMP with an accepting skeleton DFA. In practice, the skeleton DFA
behavior can also be achieved using only the pattern P, the failure
function f, and a pointer i which indexes symbols in P rather than
states in M.

calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
M starts in state M
i := current state in M (updated with transitions)
71
while 5 <t do
if T; = P, then
J+7+1
M enters state M; 1
if M is in state M, then
record (j — p)
M enters state My
end
else
M enters state My,
if M is in state My and T # P;; then
| 7¢7+1
end
end

end

An Example

~

aabbabaabaabca
abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if Tj = Pi-l—l then

J—J+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

aabbabaabaabca
abaabc

f) | 0 0 1 1 2 0

**See previous set of slides for exactly how we constructed this!

[calculate f(@@) for 1 <i < p]
construct a skeleton DFA M for P using f
M starts in state M
i := current state in M (updated with transitions)
g1
while j <t do
if Tj = Pi+1 then
J—J+1
M enters state M; 1
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

aabbabaabaabca
abaabc

i 1 2 3 4 5 6
P, a b a a b C
f(i) 0 0 1 1 2 0

calculate f(i) for 1 <i<p

[construct a skeleton DFA M for P using f]

M starts in state My

i := current state in M (updated with transitions)
g1

while j <t do

if Tj = Pi-l—l then

J+7+1

M enters state M; 1

if M is in state M, then
record (j — p)

M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

calculate f(i) for 1 <i<p
[construct a skeleton DFA M for P using f]
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T; = P, then
J<J+1
M enters state M;q
if M is in state M, then

i 1 2 3 4 5 6 record (j — p)
M enters state My,
P; a b a a b c end
else
(i) 0 0 1 1 2 0 M enters state My,
if M is in state My and T # P;; then
| J<g+1
end
end

calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T; = P, then
J<J+1
M enters state M; 1
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state My

i := current state in M (updated with transitions)
) — 1

while j <t do

if Tj = Pi-l—l then

j+<3+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if T; = P;.1/then

)<< 7+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
M starts in state M

7 := cu
g1

rrent state in M (updated with transitions)

while j <t do

if Tj = Pi-l—l then

[

j+—j+1
M enters state M4

end

if M is in state M, then
record (j — p)

M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| J&g+1

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do
if Tj = Pi-l—l then

J<J+1

M enters state M; 1
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if T; = P;.1/then

)<< 7+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if T; = P, /then

7)< 7+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else
[M enters state M f(i)]
if M is in state My and T # P;; then
| j<J5+1
end
end

end

J

4

aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if Tj = Pi-l—l then

J—J+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else
M enters state M¢(;
[if M is in state M fand [TJ = Pi+1]then
| 7o +1
end
end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if T; = P;.1/then

)<< 7+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
M starts in state M

7 := cu
g1

rrent state in M (updated with transitions)

while j <t do

if Tj = Pi-l—l then

[

j+—j+1
M enters state M4

end

if M is in state M, then
record (j — p)

M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| J&g+1

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do
if Tj = Pi-l—l then

J<J+1

M enters state M; 1
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if T; = P;.1/then

)<< 7+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
M starts in state M

7 := cu
g1

rrent state in M (updated with transitions)

while j <t do

if T7' = Pi+1 then

[

j+—j+1
M enters state M4

end

if M is in state M, then
record (j — p)

M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| J&g+1

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do
if Tj = Pi-l—l then

J<J+1

M enters state M; 1
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if T; = P;.1/then

J<3+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if T; = P, /then

7)< 7+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else
[M enters state M f(i)]
if M is in state My and T # P;; then
| j<J5+1
end
end

end

J

4

aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if Tj = Pi-l—l then

J—J+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else
M enters state M¢(;
[if M is in state M fand [TJ - Pi+1Jthen
| 7<7+1
end
end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if Tj = Pi-l—l then

J—J+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else
M enters state My,

if M is in state My and then

|
end
end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if T; = P;.1/then

)<< 7+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
M starts in state M

7 := cu
g1

rrent state in M (updated with transitions)

while j <t do

if Tj = Pi-l—l then

[

j+—j+1
M enters state M4

end

if M is in state M, then
record (j — p)

M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| J&g+1

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do
if Tj = Pi-l—l then

J<J+1

M enters state M; 1
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J

: 2
aabbabaabaabca

abaabc

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
M starts in state M

i := current state in M (updated with transitions)
g1

while j <t do

if T; = P;.1/then

)<< 7+1

M enters state M; 1

if M is in state M, then

record (j — p)

M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
j+—j+1
[M enters state Mi+1}
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
J<J+1
M enters state M;q
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if 7, = By, then
74=3+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
j+—j+1
[M enters state Mi+1}
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
Jj<g+1
M enters state M;q
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc
74=3+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
j—j+1
[M enters state Mi+1}
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
Jj<g+1
M enters state M;q
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc
74=3+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
j—j+1
[M enters state Mi+1}
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
Jj<g+1
M enters state M;q
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc
74=3+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc
J<—7+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else
[M enters state M f(i)]
if M is in state My and T # P;; then
| j<J5+1
end
end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
J<J+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else
M enters state M¢(;
[if M is in state M fand [TJ = H+1]then
| 7<7+1
end
end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if 7 = Py then
74=3+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
j+—j+1
[M enters state Mi+1}
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
J<J+1
M enters state M;q
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc
74=3+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
j—j+1
[M enters state Mi+1}
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
Jj<g+1
M enters state M;q
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc
74=3+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
j—j+1
[M enters state Mi+1}
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
Jj<g+1
M enters state M;q
(if M is in state M) then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc
74=3+1
M enters state M;q
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if 7) = P,,, then
j—j+1
[M enters state Mi+1}
if M is in state M, then
record (j — p)
M enters state My,
end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca e
i := current state in M (updated with transitions)
8 14)
g1
while j <t do

abaabc if T = P,,, then
C—— Jei+1
6 M enters state M; 1
if M is in state M, then
[| record (j —p) }
| M enters state My,

end

else

M enters state My ;)

if M is in state My and T # P;; then
| j<J5+1

end

end

end
8

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state M,
i := current state in M (updated with transitions)
g1
while j <t do
abaabc if T) = Py, then
J—J+1
M enters state M; 1
if M is in state M, then
record (j — p)
[M enters state M f(p)]
end

else

M enters state My,

if M is in state My and T # P;; then
| < J+1

end

end

end
8

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state M,
i := current state in M (updated with transitions)
Jj1

while j <t do
abooo iij:Pi+1 then
jJ+3+1
M enters state M; 1
if M is in state M, then
record (j — p)
(M enters state My)|

end

else

M enters state My,

if M is in state My and T # P;; then
| < J+1

end

end

end
8

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
Jj1

while j <t do
ab". if T; = P,y then
7 7+1
M enters state M; 1
if M is in state M, then
record (j — p)
M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end
8

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
Jj1

while j <t do
abooo ifT?:Pi+1 then
=i
[M enters state Mi+1]
if M is in state M, then
record (j — p)
M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end
8

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state M,
i := current state in M (updated with transitions)
Jj1

while j <t do
abooo iij:Pi+1 then
jJ+3+1
M enters state M; 1
(if M is in state M, Jthen
record (j — p)
M enters state My

end

else

M enters state My,

if M is in state My and T # P;; then
| < J+1

end

end

end
8

J
‘ calculate f(i) for 1 <i<p
construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My
i := current state in M (updated with transitions)
Jj<1

while ;7 < t|do
abooo iij:Pi+1 then
jJ+3+1
M enters state M; 1
if M is in state M, then
record (j — p)
M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end
8

calculate f(i) for 1 <i<p

construct a skeleton DFA M for P using f
aabbabaabaabca M starts in state My

i := current state in M (updated with transitions)

Jj1

while j <t do
abooo iij:Pi+1 then
jJ+3+1
M enters state M; 1
if M is in state M, then
record (j — p)
M enters state My,

end

else

M enters state My,

if M is in state My and T # P;; then
| j<J5+1

end

end

end
8

Results:

The pattern P = “abaabc” occurs once in T = “aabbabaabaabca”
starting at position 8.

1 2 3 4 5 6 7 8 9 10 1N 12 13 14

aabbabaabaabca
abaabc

