Professor Istrail

Global and Local

Professor Istrail

Sequence Comparison

Biomolecular sequences

- DNA sequences (string over 4 letter alphabet {A, C, G, T})
- RNA sequences (string over 4 letter alphabet {ACGU})
- Protein sequences (string over 20 letter alphabet {Amino Acids})

Sequence similarity helps in the discovery of genes, and the prediction of structure and function of proteins.

Global Similarity

- Scoring Schemes
- Edit Graphs
- Alignment = Path in the Edit Graph
- The Principle of Optimality
- The Dynamic Programming Algorithm
- The Traceback

Professor Istrail

Input: two sequences over the same alphabet **Output:** an alignment of the two sequences

Example:

- GCGCATTTGAGCGA
- TGCGTTAGGGTGACCA
- A possible alignment:

Consider two sequences

$$X = x_1 x_{2...} x_n$$

$$X_i, y_j \text{ belong to } \Sigma$$

$$Y = y_1 y_{2...} y_m$$

Over the alphabet

$$\Sigma = \{A, C, G, T\}$$

Professor Istrail

Scoring Schemes

Jnit-score	δ	Α	С	G	Τ_	
	Α	1	0	0	0 0	-
	С	0	1	0	0 0	
	G	0	0	1	0 0	
	Т	0	0	0	1 0	
	-	0	0	0	0 0	

C is aligned with G

G is aligned with G

A is aligned with A

Alignment

ACG ||| AGG A C | | A G

Unit-cost

G

Alignment

A-CG - G ATCGTG

Score

$$\delta_{(A,A)} + \delta_{(-,T)} + \delta_{(C,C)} + \delta_{(G,G)} + \delta_{(-,T)} + \delta_{(G,G)}$$

THE SUM OF THE SCORES OF THE PAIRWISE ALIGNED SYMBOLS

Professor Istrail

Scoring Scheme

Professor Istrail

Scoring Functions

Mutations= Substitutions, Insertions, Deletions

Scoring function = a sum of a terms each for a pair of aligned residues, and for each gap

The meaning = log of the relative likelihood that the sequences are related, compared to being unrelated

Identities and conservative substitutions are **Positive terms**

Non-conservative substitutions are Negative terms

Professor Istrail

The Edit Graph

Suppose that we want to align AGT with AT

We are going to construct a graph where alignments between the two sequences correspond to paths between the begin and and end nodes of the graph.

This is the Edit Graph

The Edit graph has (3+1)*(2+1) nodes

Professor Istrail

Professor Istrail

The Graph is directed. The nodes (i,j) will hold values.

Professor Istrail

Algorithmic Functions of Computational Biology –

Professor Istrail

Directed edges get as labels pairs of aligned letters.

Alignment = Path in the Edit Graph

Every path from Begin to End corresponds to an alignment

Every alignment corresponds to a path between Begin and End

Professor Istrail

The Principle of Optimality

The optimal answer to a problem is expressed in terms of optimal answer for its sub-problems

Professor Istrail

Dynamic Programming

Given: Two sequences X and Y Find: An optimal alignment of X with Y

Part 1: Compute first the optimal alignment score

Part 2: Construct optimal alignment

We are looking for the optimal alignment = maximal score path in the Edit Graph from the Begin vertex to the End vertex

Professor Istrail

The DP Matrix S(i,j)

Professor Istrail

The DP Matrix

Matrix S =[S(i,j)]

S(i,j) = The score of the maximal cost path from the Begin Vertex and the vertex (i,j)

The optimal path to \bigcirc (i,j) must pass through one of the vertices (i-1,j) (i,j-1)

(i-1,j-1)

Professor Istrail

Opt path

Professor Istrail

Optimal path

Professor Istrail

The Basic ALGORITHM

Algorithmic Functions of Computational Biology – **Professor Istrail** The Basic ALGORITHM: Local Similarity We add his S(i-1, j-1) + δ (xi, yj), $S(i-1, j) + \delta$ (xi, -), S(i,j) = MAXS(i, j-1) + (-, yj)

Professor Istrail

General Scoring Schemes

Assumptions

1. Independence of mutations at different sites

Additive scoring scheme

2. Gaps of any length are considered one mutation

All of the efficient alignment algorithms -- employing on the dynamic programming method --are based fundamentally on the of the fact that the scoring function is additive.