

" there are m² substrings in string of length m.

 \rightarrow brute force comparison of every substring in strings length m and $n = O(m^2 \cdot n^2)$ = However, Smith-Wakerman = $O(mn) \sim quadratic VAY \vee Beautiful algorithm \vee example:$

X= ACACTC Y= ACTCCA S= identity:+1

mismatch:-1 indel:-2

		A	L	T	C	C	Α	
	0	0	0	ο	0	0	ο	
	0	١	0	0	0	0	1	
,	0	O	2	0	١	۱ .	0	
	0		0	١	0	0	2	
	0	0	2	0	2	١	0	
٢	0	0	0	3	٦,	1	0	
	0	0	١	1	4	2	D	

Max local alignment: A C T C A C T C A C T C (staft backtrack @ V*, stop when

(each a zero)

" The O in the recursion -

relation essentially gives your a restart

¹⁰ For global alignment, the optimal alignment length for 1x1=m and 1x1=n is O(n)

" For local alignments the length of the alignment = OLlog(n))

¹⁰ Thus, the scoring scheme for local alignment has to be designed in a very sophisticated manner

^a if the scoring scheme doesn't penalize appropriately, you could end up w/ a very long alignment, which might not achieve our goal.

INTRO TO GAP ALIGNMENT

ACG Gr Gr Gr Z biologists tend to preter larger gaps as opposed to lots of							
ÀT ĠAAT ĠĠĠ J 11me gaps							
^O A little bit of biological context:							
⁰ DNA is transcribed into RNA, which is translated into proteins							
RNA is spliced (non-waling innons are removed) before translation							
a SO, it you have spliced RNA and you want to align it with the genome,							
yon want to use an alignment algorithm that is tolerant of long gaps to account							
for the RNA's missing introns							
¹² How do we favor longer gaps algorithmically?							
¹³ Affine Gap Alignment has 2 parameters:							
penalty for opening a gap: d Z d>B							
e penalty for continuing a gap: B							
d how do we score a gap cluster of size n?							
^{II} logarithmic in n? Quadratic in n?							
Lo most useful = linear in n:							
score of gap cluster = 0(+ n(B)							

This algorithm is gonna have 4 matrices instead of 1... get excited!