Knuth-Morris-Pratt (KMP) Algorithm
and the Failure Function



KMP

* The Knuth-Morris-Pratt (or KMP) algorithm is used to determine if
a search string (p, of length m) occurs in a text (t, of length n).

* For example, if our text is “sorin,” and we want to find the search
string “rin,” the KMP algorithm would give us that the string occurs
starting at the 3" character (index 2) of the text.

* With the KMP algorithm, a worst-case run time of O(n+m) can be
achieved. In other words, in the worst-case scenario we would have
to look at every character in the text and search string at least
once.



KMP (example)

* Let's run through how we determine where “rin” occurs in “sorin.”
We begin by lining up our pattern string (“rin”) with the text
“sorin.”

sorin
rin



KMP (example)

* Now, we must compare the first letter of the pattern string to the
first letter of the text. They do not match, so we must shift over our
pattern string (now lining up the “r” with the “0").

orin
I N
sorin

rin



KMP (example)

* We now compare the second letter of the text with the first letter
of the pattern, and again there is no match. Thus, we must shift the
search string over by one spot.

S rin
I N
sorin

rin



KMP (example)

* Next, we will compare the third letter, "r,” in “sorin” to the “r” in
“rin.” This is a match, so we move on to the next letter in the
pattern string to see if it matches the next letter in the text. Once
again, there is a match, so we move on to the next letter. This one
also matches (both are "n”), and we have reached the end of the
pattern string, so we are done. The search string has been found in
the text at index 3. Note that you could also continue the algorithm
to find all of the indices in the text at which the pattern string
OCCUrs.

SO In SO n SO
1 N N



Failure Function

* In order to for us to implement our searching algorithm more
efficiently, we must first derive what is known as the “failure
function.”

* Given we have a search string (string we are searching for in a given
sequence of letters), the failure function tells us the following: if we
have character matched x letters of our string, what is the length of
the longest suffix of these x letters that is also a prefix of the search
string?

* If this can be determined at every index of our search string, we will
know how much we should shift the string if a mismatch is found.



Failure Function (pseudocode)

_ <0
Input: Pattern p with m characters. A1) <o

for every jfrom 2tomdo
= f(j-2)
while p(j) # p(i+1) and i >0 do
i = f(i);

Output: Failure function (f)

This might be a little confusing, so if p(j) # p(i+1) and i = o then
let’s run through an example while f(j)=o

following the pseudocode. else

Afterwards, we will analyze our f(j) =i+2

result and see why it makes sense.
return f



Failure Function (walkthrough +
example)

* Let's say we have the following pattern (search string): “abaabc”

* For every index, we want to determine the value that the failure
function should return. In other words, we want to know, for every
index j, what is the value of f(j) (failure function of j).




Failure Function (walkthrough +
example)

* First, we must set a variable (i) to o and set the value of f(1) to o.

* Next, for every value of j from 2 to 6 (since the length of abaabc is
6).

* First, we look at j=2:
e i=f(2-1)=f(1)=o0
* iis not greater than o, so skip while loop

* p(2) is not equal to p(2) (a is not equal to b), and i is equal to o, so we set
the value of f(2) to o.




Failure Function (walkthrough +
example)

* Next, we have j=3:
ci=f(3-1)=f(2)=0
* iis not greater than o, so skip while loop
* p(3) is equal to p(2) (p(3) = p(2) = a), so we set the value of f(3) to i+1, or 1.




Failure Function (walkthrough +
example)

* Now we have j=4:

* i=1(4-1)=1(3)=1
* p(4)=aand p(i+1) =p(2) = b, and i is greater than o, so we enter the while
loop.
* Inthe first iteration, we set i equal to f(i), so we get i = f(i) = f(2) = o.
* Now iis equal to o, so we break out of the loop.
* p(4)=aand, sinceiisnow o, p(i+1) = p(1) = a. Since these are the same, we
skip the first condition and instead set f(4) = i+1 = 1.




Failure Function (walkthrough +
example)

* Next we have j=5:
o | =fi(o-1) =Sy =t
* p(5) = b and p(i+1) = p(2) = b, so we skip the while loop.

* p(5) =band p(i+1) = p(2) = b. Since these are the same, we skip the first
condition and instead set f(5) = i+1 = 2.




Failure Function (walkthrough +
example)

* Lastly, we have j=6:
e i=f(6-1)=f(5) =2
* p(6) =cand p(i+1) = p(3) = a, and i > 0, so we enter the while loop.
* Firstiteration: seti="f(i) =f(2) = o.
* iisnow equal to o so we exit the loop.

* p(6) =cand p(i+1) = p(1) = a. Since these are not same, and i is equal to o,
we set f(6) equal to o.




Failure Function (explanation)

* The finished table below represents the failure function, which tells us,
for every string of length j from j =2 to j =6, the length of the longest
suffix of the j letters that is a prefix of the entire string.

* If we look at our table, this can be seen.

At j =2, we have the suffix "b,” and since this is not a prefix of the entire string,
f(2) = o.

At j = 3, we have the suffices "ba” and “a.” “a” is also a prefix of the entire string,
so we write its length as the value for f(3) (f(3) = 1). The same is true for j =4.

At j=5, we have the suffices “baab,” "aab,” “ab,” and "b.” “ab” is a prefix of the
entire string, and it has length 2, so we set the value of f(5) to 2.

At j=6, every suffix ends with “¢,” and there is no way to get a prefix of the entire
string that has a "c” in it, therefore f(6) = o.



Failure Function (purpose)

* Knowing the values for the failure function is important for the
KMP algorithm because it allows us to know how much we should
"shift” our pattern string over if we encounter a mismatch.

* Forinstance, in the case of “abaabc,” let’s say we encounter a
mismatch at “c.” We now must look at the failure function value for
the last index that was matched correctly (index 5, the “"b"). This
gives us 2.

* This value (2) tells us that the characters at index 4 and 5 are the
same as those at 1 and 2, so, when shifting over our pattern string,
we must line up the character at index 3 with the character that we
just failed to match the “c” with (as opposed to lining it up with the
character at index 1, which is done if the failure function value is o).



Example

* We will now show the series of comparisons that will be done when
we try to find the string "abaabc” in a text "abccabaabaabc.” Red
indicates characters that match, green indicates characters
currently being compared.

bccabaabaabc
baabc i

ccabaabaabc
aabc

Match



Example

cabaabaabc
abc

Mismatch, shift by length of
pattern string since f(2) = o

abccabaabaabc
baabc

Mismatch, shift by length of
pattern string since f(1) = o

abcc baabaabc
baabc

Match



Example

abcc
abcc

abcc

aabaabc
aabc

Match

abaabc
abc

Match

baabc
b C

Match



Example

abcc
abcc

abccaba

aabc
C

Match

abc

Mismatch, shift by length of
pattern string minus 2 since

(==t

baabc
baabc

Match



Example

abccaba

Match

abccaba

Match

abccaba

Match

aabc
aabc

abc
abc

b C



Example

abccaba b c
i b c
abccaba
Match
abccaba

Pattern found



