ALIGNMENT

The sequence alignment problem:

$$
\begin{aligned}
& \text { given: } \\
& .2 \text { sequences }(X \text { and } Y) \\
& \text { scoring matrix }(\delta)
\end{aligned}
$$

- compare: the pairwise alignment of X and Y of MAXIMUM score

Global aligment noptimal alignment along the entirety of both sequences

For example: given: $\quad X=A C A A T$ $Y=T$ GAGA with scoring scheme:

- 'O for gap
-t o for mismatch
ot 1 for match
we could get the alignment:

$$
\begin{aligned}
& T C A G A T \\
& A C A-A T \\
& \text { score: } 0+1+1+0+1+1=4
\end{aligned}
$$

Thus, there are 3 possible alignments for a letter in a sequence:

- match : align letter w/ same letter in other sequence (A)
- MISMATCH: align refer not wI same letter ($\left.\begin{array}{l}\mathrm{T}\end{array}\right)$
- GAP/INDEL_: align letter w/ gap (A)
* biological application of indels: an insertion/deletion mutation Q some point in evolutionary history
- There is a bijection ($1: 1$ correspondence) between alignments of X and Y and directed paths from the top left cell (beginning) to bottom right cell (end) of edit graph

- the edit graph is a directed graph with edge weights
- max alignment score $=$ max directed pain crow beginning \rightarrow end
suppose sequence X is of size m and Y is of size n :
\rightarrow \# of alignments brown X and Y is exponential

Now, for the algorithm: $\quad X=x_{1} x_{2} x_{3} \ldots x_{m} ; \quad Y=y_{1} y_{2} y_{3} \ldots y_{n}$

- Edit graph:
-dimensions: $(m+1)(n+1)$
- entries nave form (i, j)

$$
1 \leq i \leq m ; \quad 1 \leqslant j \leq n
$$

- edges: 3 types : horizontal, vertical, diagonal
- horizontal : gap in $Y \quad(i-1, j) \rightarrow(i, j) \quad\binom{x_{i}}{-}$
- vertical: gap in $x \quad(i, j-1) \rightarrow(i, j)\left(y_{j}\right)$
- diagonal: alignment (match|mismateh) $(i-1, j-1) \rightarrow(i, j)\binom{x_{i}}{y_{j}}$
- $S(i, j)=$ score of the max score path form start to i, j
ex
\rightarrow any optimal path from stent $\rightarrow(i, j)$ mast

$$
\begin{array}{|l|l|}
\hline i-1, j-1 & i, j-1 \\
\hline i-1, j & i, j \\
\hline
\end{array}
$$ use one of the 3 green edges

$\left(S(i-1, j)+\delta\left(x_{i},-\right)\right.$, cost of Y gap
scoring scheme: $S(i, j)=\max \left\{\begin{array}{l}S(i-1, j)+\delta\left(x_{i},-\right), \\ S(i, j-1)+\delta\left(-, y_{j}\right), \\ S(i-1, j-1)+\delta\left(x_{i}, y_{j}\right)\end{array}\right.$ cost of x gap of
First, you must initialize the edit graph (depending on aligning the scoring scheme - ${ }^{\text {assuming }}$ this one has +0 gap penalty) x_{i} and y_{j}

Then, you can go cell by cell, calculating $S(i, j)$ based on the 3 surrounding cells.

